

Rocket.Chat Integration
Version 1.4

Rocket.Chat Plugin

Overview

The Rocket.Chat plugin provides integration between Rock RMS and a Rocket.Chat

server, allowing you to increase your community engagement with fully integrated chat

functionality. The plugin only supports linking a single Rocket.Chat server.

Features

The Rocket.Chat plugin provides the following features:

 Single Sign-On – Allows your Rock login to be used for Rocket.Chat.

 Rocket.Chat Account Provisioning – Automatically create Rocket.Chat user

accounts for your Rock RMS community members.

 Group to Private Channel Sync – This allows a group in Rock to automatically

create a private channel and sync its members to it.

 Profile Sync – This feature allows profile information in Rock to be synced to

Rocket Chat. This information includes:

o Person Photo

o Email Address

o Rocket.Chat role assignments based on Rock data views, which enables

badges to be displayed in Rocket.Chat

 Chatbot (think Chip in the Rock Community) – Chatbot functionality allows Rock

to automate replies in Rocket.Chat and add some personalization features.

o Responds to chat message triggers that you can configure in Rock

o Gives out “chat points” based on community member feedback

 Chat History – Log Rocket.Chat messages to Rock interactions.

 Mobile Access – This allows individuals to get their Rocket.Chat account

information for use by the Rocket.Chat mobile application.

Configuration Steps

These instructions assume you have already installed and configured a Rocket.Chat

instance with an administrator account. If you haven’t already done that, you’ll want to

start at https://rocket.chat/install and find the documentation for your preferred server or

cloud hosting provider. For the sake of these instructions, we will assume you have

Rocket.Chat running at https://chat.rockrmsdemo.com/ and your Rock website is

https://www.rockrmsdemo.com/. Any time you see those URLs in the instructions below,

you should replace them with your server’s address.

Step 1: Install the Rocket.Chat plugin from Rock Shop
Log in to the Rock Shop and download the Rocket.Chat plugin. After installation two

pages will be added to your Rock installation. These pages can be found under ‘Admin

Tools > Installed Plugins’.

Step 2: Create a Personal Access Token in Rocket.Chat
This step generates the API credentials Rock will use to access your Rocket.Chat

server.

1. Log in to your Rocket.Chat server with an administrator account. Please note

that the account you choose will be the account that Rock uses for making the

API calls to support the integration. You may want to consider creating a special

account for this purpose.

2. Click on your user avatar in the top left corner, and then click "My Account".

3. Select "Personal Access Tokens" from the “My Account” menu.

4. Create a name for your token (something like "Rock RMS") and click the "Add"

button.

5. Rocket.Chat will give you two strings, a Token and a user Id. You will need both

values for the next step.

Step 3: Configure the Rocket.Chat plugin settings
This step tells Rock what it needs to know to communicate with your Rocket.Chat

server, using the credentials we created in Step 2.

1. Copy the Personal Access Token values from Step 2 into the Rocket.Chat

settings.

2. Log in to your Rock admin portal (e.g., https://www.rockrmsdemo.com/admin).

3. Open the "Admin Tools" menu and click "Installed Plugins".

4. Click on "Rocket.Chat Settings" and enter the correct configuration values from

Step 2:

o Rocket.Chat Server URL – Enter the URL of your Rocket.Chat server.

o Rock API Username – Rocket.Chat User Id.

o Rock API Password – Rocket.Chat Token Password.

o Allow User Self-Registration – If this option is not enabled, users will be

unable to access Rocket.Chat until an account has been created for them

by the data synchronization job (which is explained in more detail later in

this document). This option is enabled by default.

Step 4: Enable the appropriate CORS policy
In this step, we will configure the Cross-Origin Resource Sharing (CORS) policy which

tells Rock that it’s okay to allow access to Rock resources from Rocket.Chat. This is

necessary to prevent Rock’s built-in security from blocking access to the REST endpoint

that Rocket.Chat will use to authenticate users.

1. Open the "Admin Tools > Security > REST CORS Domains ".

2. Click on the Add button and enter the Rocket.Chat Server URL in the Value (e.g.,

https://chat.rockrmsdemo.com). Enter a description (if you want to) and click the

"Save" button.

WARNING: Azure App Service implements its own CORS controls, and you will also

need to enable Access-Control-Allow-Credentials and add your Rocket.Chat Server

URL as an “Allowed Origin” in the Azure App Service, under API > CORS.

Please be aware that other hosting providers, particularly those that implement load

balancers or other forms of reverse proxy servers may have similar configuration

requirements.

Step 5: Enable the allowed frame domain
In this step, we’ll tell Rock to permit the Rocket.Chat server to load Rock pages within a

frame. This enables the Rocket.Chat server to send users to the Rock login form if

they’re not already authenticated.

1. Open the "Admin Tools > CMS Configuration > Sites".

2. Select the site you plan to use for your audience to use to login into Rock for

access to Rocket.Chat, and then click on the "Edit" button.

3. Expand the "Advanced Settings" section at the bottom.

4. Edit the "Allowed Frame Domain(s)" setting to include the Rocket.Chat server.

 If this value is blank, remember to change the domain name to your own

Rocket.Chat server, and enter:

‘self’ chat.rockrmsdemo.com

Please Note: The ‘self’ entry is required and if you leave it out, you will break

Rock’s modal popups. Rock includes this value by default when you don’t

have something else in this box. You can also explicitly enter the domain of

your Rock server, here, but it’s better to simply let the browser figure it out (by

specifying ‘self’). Be sure to not include the https://.

 There may already be a value configured, here, if your site has been

configured to allow frames for another domain. If there is already a value

present, add a space and the Rocket.Chat server domain.

Step 6: Enable Iframe Authentication in Rocket.Chat
This step configures Rocket.Chat to send users who are not already authenticated to

the login form in Rock, using an iframe.

1. Click on the "Options" menu in the top left corner (the menu icon with three

vertical dots).

2. Click "Administration".

3. Scroll down on the menu on the left and click on "Accounts" under the "Settings"

header.

4. Expand the "Iframe" section and enter the appropriate configuration values for

your server:

a. Enabled: True

b. Iframe URL: https://www.rockrmsdemo.com/RocketChatLogin

c. API URL: https://www.rockrmsdemo.com/api/RocketChat/Sso

d. Api Method: GET

5. Select the “Save Changes” at the top of the page.

Step 7: Disable the Rocket.Chat API Rate Limiter
This step is necessary to prevent the Rocket.Chat plugin from hitting rate limits that will

prevent it from accomplishing tasks it needs to do.

1. Click on the "Options" menu in the top left corner (the menu icon with three

vertical dots).

2. Click "Administration".

3. Scroll down on the menu on the left and click on "Rate Limiter" under the

"Settings" header.

4. Expand the “API Rate Limiter” section.

5. Change the value of “Enable Rate Limiter” to “False”.

Chatbot Setup

The Chatbot allows Rock to add automation to your Rocket.Chat community. These

features include:

 Points – Rock can listen for certain patterns to give community members

points. These patterns look like: @teddecker ++ or @teddecker - -

 Automated Responses – Rock can also look for regex patterns in messages

and automate a canned reply. More on setting this up below.

 Message Logging – The integration can also log messages to Interactions in

Rock.

Configuring Rocket.Chat to Use the Rock Webhook
In this step, we’ll connect Rocket.Chat to the Webhook in Rock that enables the chat

bot features (including automated responses, points, and chat history within Rock). The

Rock Webhooks is already set up by the plugin installation process, so this step is done

entirely within Rocket.Chat.

1. Choose or create a Rocket.Chat user for your integration. This user should be a

member of the ‘bot’ role. You can create this user under the “Users” tab of the

Rocket.Chat administration options. One named ‘Rocket.Cat’ comes with your

Rocket.Chat install.

2. Select "Integrations" from the “Administration” menu.

3. Click the "New Integration" button in the top right corner.

4. Select "Outgoing Webhook" and enter the following values:

 Select "Message Sent" as the Event Trigger.

 Set “Enabled” to “True”. This is important, so make sure you don’t skip

this step as the value is defaulted to ‘False’.

 Enter a name for your integration (we recommend something like "Rock

Integration",

 Enter "all_public_channels,all_private_groups" as the Channel value. This

informs Rocket.Chat where the bot should be active, and these values mean

it will operate in public channels and private groups (but not direct messages).

 Enter "https://www.rockrmsdemo.com/Webhooks/RocketChatMessages.ashx"

in the URLs box. You didn’t forget to replace that domain name with your

own domain, right?

 Put the desired Rocket.Chat user's name in the "Post as" box.

 Leave the rest of the values on their default settings and click "Save changes"

in the top right corner.

Configuring Automated Chat Triggers
The Rocket.Chat bot is configured to respond to only one trigger, by default, and that’s

“Bot Test”, like this:

This is the same code we use for Chip, though, and you can configure your own

responses to any queue you want by adding Defined Values to the Rocket.Chat

Messages defined type (Admin Tools > General Settings > Defined Types >

Rocket.Chat Messages).

The basic format is that the “trigger” is the value, and the response is the description.

You can use regular expressions in the trigger to make it match patterns. You can also

supply multiple potential responses in the description by putting each response on a

different line and the chat bot will select one at random. Please note that this means

your responses must be on a single line. If you put in multiple lines, they will be treated

as separate responses and the user will only receive one of them.

Rocket.Chat Sync Job

The provided sync job adds additional capabilities to the integration. These include:

 Profile Sync – This provides a one-way sync of Rock profile photos and emails

to Rocket.Chat.

 Group Sync – This feature allows you to sync a group in Rock to a provide

group in Rocket.Chat. More details on the settings of this feature are below.

 Role Sync – This allows you to provide data views in Rock that will be synced to

roles in Rocket.Chat.

Some of those require some additional setup, but don’t worry, we’ll get to that in a

minute.

1. Open the "Admin Tools > System Settings > Jobs Administration" in Rock.

2. Click on the "Add" button to create a new job.

3. Choose a name for the job (like "Rocket.Chat Sync").

4. Enter a Cron Expression to determine how often the job should run.

5. Select "org.sparkdevnetwork.RocketChat.Jobs.SynRocketChat" as the Job Type.

Job Configuration Options
This job type includes some custom configuration options which change the behavior of

the job.

Resync Passwords – This option will synchronize passwords between Rocket.Chat

and the one stored in Rock, by updating the Rocket.Chat password. Please note that

using this option will cause mobile sessions to expire, and the user may need to get

their password back from within Rock.

Sync Photos – This option will synchronize Rock photos to Rocket.Chat avatars. This

option is enabled by default.

Sync Email – This option will synchronize email addresses from Rock to Rocket.Chat.

This option is enabled by default.

Disable Accounts Without Groups – This option treats any user who is not a member

of a “Rocket.Chat Channel” group (which is explained in further detail below) as an

inactive user and disables their Rocket.Chat account. This means that those users will

be blocked from accessing Rocket.Chat.

Delete Inactive Groups – This option will remove any groups from your Rocket.Chat

server which are not associated with a “Rocket.Chat Channel” Rock group or which no

longer have any active members. This setting is enabled by default. You may disable

this setting if you prefer to leave this groups on our Rocket.Chat server.

Exclusion Group – This option allows you to select a group and any members of that

group will have their Rocket.Chat account disabled.

Configure Groups for Synchronization
Rock Groups are not automatically synchronized to Rocket.Chat. To enable groups to

be synchronized, you will need to create a new Group Attribute with a Key of

RocketChatChannel (this key must match exactly, so make sure you type it correctly!)

and a Boolean Field Type.

You can create as many attributes with this key as you want, in case you want to allow

multiple Group Types to become Rocket.Chat Channels. You can set these attributes

up by going to Admin Tools > General Settings > Group Types.

Here’s an example of how this attribute might be set up:

NOTE: The Group Attribute Key is “RocketChatChannel” and does not contain a

period.

You may also want to edit the security of this attribute to determine who should be

allowed to view/edit it. By default, only administrators will be able to view the attribute.

Once you’ve set the Entity Attribute up correctly, you should see it on groups that match

the Group Type you selected (assuming that was the criteria you used to define the

attribute, of course). This value must be set to true for the Rocket.Chat Sync Job to

recognize the group.

The Rocket.Chat synchronization job will create private group chat rooms in

Rocket.Chat for any groups in Rock which you have set with the “Rocket.Chat Channel”

attribute, and it will add and remove users from that channel to mirror the membership

in Rock. Additionally, if a member is marked as a leader of the group in Rock, they will

be marked as a leader and a moderator in Rocket.Chat.

Data Views to Rocket.Chat Role Sync

NOTE: The Rocket.Chat plugin does not automatically create these roles in

Rocket.Chat. You must create the matching role there manually before it will

synchronize.

You can assign Rocket.Chat roles by creating data views that include Rocket.Chat

users. The name of the data view needs to match the Rocket.Chat role exactly, and

you will need to create the role on your Rocket.Chat server manually (Administration >

Permissions).

There are several ways you can utilize this functionality, but one way it can be used is to

create custom badges for your users by adding custom CSS that modifies the role tag.

For example, below are the CSS rules we use to create the Core Team badge in the

Rock community chat. This is added in Rocket.Chat under ‘Administration > Layout >

Custom CSS’.

.role-tag[data-role="Core Team"] {
 padding: 1px 8px 1px 0;
 color: #ee7725;
 border: 0
}

.role-tag[data-role="Core Team"]::before {
 content: "";
 background-image: url("https://chat.rockrms.com/emoji-
custom/Rock.png");
}

The result looks like this:

To accomplish this, you will create a data view in the “Rocket.Chat Roles” data view

category, which was added when you installed the plugin. Here’s a simple example to

match the badge above.

Additional Technical Details

New Blocks and Pages
The Rocket.Chat plugin installs the following new blocks and pages.

Blocks:
 Rocket.Chat Settings Block – This block allows you to enter the Rocket.Chat

integration settings (server URL, API username and password).

 Rocket.Chat Login Block – This block utilizes Lava to redirect users to

Rocket.Chat after ensuring that they are logged in. You can customize the

behavior of this block by editing the Lava.

 Rocket.Chat Intro Block – This block displays some information about

Rocket.Chat to your users, including their Rocket.Chat username and password

which they will need to access the mobile chat applications. It also includes

download links for those applications. This block also utilizes Lava, so you can

customize how the page appears.

Pages:
 Rocket.Chat Settings Page – This page uses the Rocket.Chat Setting block

and is installed in the “Installed Plugins” area of your Rock RMS site.

 Rocket.Chat Login Page – This page uses the Rocket.Chat Login block and is

installed at the /RocketChatLogin page route.

 Rocket.Chat Intro Page – This page uses the Rocket.Chat Intro Block and is

installed at the /RocketChat page route.

Displaying A User’s Rocket.Chat Credentials
The included Rocket.Chat Intro page will display a user’s credentials and instructions for

downloading the Rocket.Chat mobile applications. That page utilizes a block which

contains customizable Lava, so you can edit it to meet your needs, but you can also

accomplish this with some custom Lava.

The example below shows how you can display a user’s credentials with Lava.

<div class=""panel panel-default"">
 <div class=""panel-heading"">
 <i class=""fa fa-rocketchat""></i> Rocket.Chat
 </div>
 <div class=""panel-body"">
 {% if CurrentPerson %}
 {% assign chatName = CurrentPerson |
Attribute:'orgSparkDevNetwork_RocketChatUsername' | Trim %}
 {% if chatName and chatName != '' %}

 <div class=""form-group"">
 <label class=""control-label"" >Username</label>
 <div class=""control-wrapper"">
 <p class=""form-control-static"">{{ CurrentPerson |
Attribute:'orgSparkDevNetwork_RocketChatUsername' }}</p>
 </div>
 </div>

 <div class=""form-group"">
 <label class=""control-label"">Password</label>
 <div class=""control-wrapper"">
 <p class=""form-control-static"">{{ CurrentPerson |
Attribute:'orgSparkDevNetwork_RocketChatPassword' }}
</p>
 </div>
 </div>
 {% endif %}
 {% endif %}
 </div>
</div>

Rocket.Chat’s Unique Email Address Requirement
Rocket.Chat requires each user to have a unique email address. This conflicts with

Rock, where, for example, family members might share a single email address. To

work around this limitation, Rock will assign an email alias, by adding “+rc” and a

number after the username portion of their email address (before the @ symbol). For

example, if two three people access your Rocket.Chat server who all use the email

address “chip@sparkdevnetwork.org”, they would receive the following email address

assignments:

 First User: chip@sparkdevnetwork.org

 Second User: chip+rc1@sparkdevnetwork.org

 Third User: chip+rc2@sparkdevnetwork.org

You should understand that this may make email delivery through Rocket.Chat

somewhat unreliable, as not all email systems permit this method of aliasing.

Rocket.Chat’s Unique Username Requirement
Rocket.Chat also requires a unique username for each user. To make it as simple as

possible to sign up, we automatically provision a username for them, by taking the full

name and replacing spaces with a period. So, “Rock Lobster” would become

“rock.lobster” in Rocket.Chat. Since it’s possible that different people might have the

same name, we also append a number to the username if it already exists (i.e.,

“rock.lobster2”, and so on).

User Avatar URLs
Rock builds the URL for your user’s avatars from the “Public Application Root” setting.

That site needs to be accessible to supply your user’s avatars. You’ve probably already

configured this, or your website wouldn’t work, but if you need to configure it, you’ll find

it under General Settings > Global Attributes.

Rocket.Chat Log
On the Rocket.Chat Settings page (Admin Tools > Installed Plugins > Rocket.Chat

Settings) you will find a button to view the Rocket.Chat log. This log will report any

errors that occur when attempting to communicate with the Rocket.Chat API as well as

every attempt to create a new user account in Rocket.Chat.

Failed Access Attempts
If the Rocket.Chat plugin is unable to log a user in or automatically create their account

for them, it will log an error to the Rocket.Chat log and display that error to the user.

This behavior is necessary to prevent the user from being caught in an endless loop of

failed login attempts. This might occur for a variety of reasons, like network problems or

problems with the Rocket.Chat server, but the most common reason this might occur is

due to a request to create an account which your Rocket.Chat server rejects. The most

likely cause of this scenario is an email address which has been blacklisted.

Cross-Origin Resource Sharing (CORS) Policy
The Rocket.Chat integration uses a client-side AJAX request to get an authentication

token from Rock. This request is issued through the user’s browser, which will not allow

requests like this by default, because it can be a security risk when it happens across

sites that can’t be trusted. You may have noticed that we added the domain of the

Rocket.Chat server to Rock’s list of approved CORS REST domains (in Step 4). This

adds an HTTP header that informs the browser that the request should be allowed

when it comes from your Rocket.Chat server. This header is necessary for the

integration to function.

Changes made to Rock when you install the Rocket.Chat plugin

We’ve discussed some of these in the configuration instructions, but here’s the technical

detail of what the plugin adds to your Rock system.

Person Attributes
The Rocket.Chat plugin creates a new category of Person Attributes, named

“Community Config”. It creates the following attributes within that category:

 Rocket.Chat Username

o Holds the user’s Rocket.Chat Username.

 Rocket.Chat Password

o Holds the user’s Rocket.Chat Password. This value is randomly assigned

by Rock, and you will need to expose it to the user to permit them to

access the mobile chat applications.

 Rocket.Chat Id

o This is the unique identifier for the user, assigned by Rocket.Chat when

the account is created.

 Chat Points

o Tracks how many points the user has received from the chat bot. This

attribute is not utilized if the chat bot is not configured.

 Rocket.Chat Last Avatar Update

o This is a DateTime value used to track when the avatar was last updated

in Rocket.Chat so that the synchronization job knows if it needs to be

updated.

 Rocket.Chat Account Seen Inactive

o This is a DateTime attribute that tracks failed login attempts due to the

Rocket.Chat account having been disabled. This prevents Rocket.Chat

from sending the user through a login loop and generating repetitive

requests for the login service. Please note that once an account has

attempted to log in after being marked inactive, it will take two hours

before this flag is reset, and the user cannot login (through SSO) before

then.

 Rocket.Chat Login Error

o This value temporarily tracks failed attempts to log a user in to prevent

them from getting stuck in an endless loop when an attempt to log a user

in or create their account in the Rocket.Chat API fails. It gets reset

immediately after being assigned, so you shouldn’t expect to see any

information, here, but you will find the error in the Rocket.Chat log. See

the section about “Failed Access Attempts” under the “Additional

Technical Details” heading, above, for more information about this.

You can, of course, access these attributes the same way you would with any others,

including through Lava.

Group Attribute
The Rocket.Chat plugin adds a new Group Attribute to all groups named “Rocket.Chat

Channel”. This attribute is a Boolean value which informs the Rocket.Chat

synchronization job that this group should be synchronized with Rocket.Chat. This

attribute has no effect if that job is not enabled.

Data View Category
The Rocket.Chat plugin adds a new Data View Category named “Rocket.Chat Roles”.

For details on what this category does, see configuration step 8b.

Troubleshooting Common Issues

Post-Login Loop
If your Rocket.Chat integration configuration is not correct, you may experience a loop,

where your browser constantly attempts to refresh after you log in to Rock. If this

occurs in your environment, you can monitor the requests using your browser’s

integrated developer tools (which you can open by pressing F12 in Google Chrome or

Microsoft Edge). Checking the “console” tab of the developer tools will typically show

you what errors are occurring.

This typically occurs when the CORS policy settings are incorrect, in which case you will

see errors like the ones below.

The first thing to do in this scenario is double-check that you have entered the correct

configuration data from Step 4 (the CORS REST domain value should be the same

URL that your browser is trying to access when the above errors are occurring) and

Step 6 (the API URL must be correct and the API method must be “GET”). You can

verify that the API URL is functioning by accessing it in your browser after you are

logged in to Rock.

If you have verified the above information and restarted your Rock service, and you are

still experiencing the error above, you will need to look at other pieces of your

infrastructure which may have control over your CORS headers. In particular, if you are

using Azure App Service, you will need to make additional configuration changes within

your Azure Control Panel (please refer to the warning note in Step 4 for more

information).

