
USING LAVA SHORTCODES

…to Build a Volunteer
Onboarding Portal

Brent Pirolli
CEDARCREEKCHURCH

WHO’S THIS CLOWN?

Brent Pirolli (BrentP@CedarCreek.tv)
 Senior Director of I.T. at CedarCreek Church
We have 6 campuses in NW Ohio currently
On staff for nearly 22 years
 Started as a video editor/production team  I.T. in 2002
Got into website construction in 2001, almost exclusively

using WordPress for web design since 2011… which is
where I learned about…

{[shortcodes]}

WHAT ARE SHORTCODES?

In WordPress for example, shortcodes are used by many plugins
to insert something into a page like a news ticker or photo
gallery. Code like [gallery_abc] might be used on the page for a
plugin to pull in a photo gallery (with the
ID of “abc”) for the end user to view.

WHAT ARE SHORTCODES?

Rock handles shortcodes in a similar
fashion where you can define the
keyword to use, insert what text/code
to call, and then insert the keyword
on a page using {[]} as your brackets.

You can find existing system
shortcodes, and add your own by
going to: Admin Tools  CMS
Configuration  Lava Shortcodes

WHAT ARE SHORTCODES?

…But there’s more! You can also use parameters with
shortcodes to cause them to function differently. A more
useful example would be the built-in {[youtube]}
shortcode which uses a video id parameter to know which
video to load.

In “short”… a shortcode is a way to display, insert, or call
larger amounts of text or code to a page without having to
type it all on that particular page. It’s sort of like a global
variable you can recall by simply inserting a keyword of
your choosing. i.e. {[define]} could be used to insert this paragraph

i.e. {[youtube id:'8kpHK4YIwY4']}

WHY USE LAVA SHORTCODES?

Less Duplicated Content

Speed of Updates

End User Experience

THE TECHNICAL

Disclaimer:
My examples here are not best practice. Some things here you
probably should do with CSS Class styling, not shortcodes, but this is
an easy way to illustrate what shortcodes do. We’ll use LAVA based
ones later, but for now, here is some CSS as a proof of concept.

THE TECHNICAL

There are 2 types of shortcodes.

INLINE
&

BLOCK

THE TECHNICAL: INLINE

INLINE means everything is contained in a single line, such as:

{[brucebanner]}

Let’s build a shortcode that replaces this with an image of Bruce Banner!

THE TECHNICAL: INLINE

Bruce

brucebanner

This shortcode will show a level
headed scientist

Use {[brucebanner]} to show an
image of Mark Ruffalo pulled off
Wikipedia.
<img style="max-width:100px;"
src="https://upload.wikimedia.org/wikipedia
/commons/1/11/Mark_Ruffalo_%2836201774
756%29_%28cropped%29.jpg">

Name:

Tag Name:

Description:

Documentation:

Shortcode Markup:

THE TECHNICAL: INLINE

Now whenever anyone uses
{[brucebanner]} anywhere

on the site, it is replaced
with a 100px wide photo of

Mark Ruffalo!

Do you see the implications? Instead of what could be hundreds of lines
of code, a single keyword can be used on any page that needs whatever

function your shortcode provides!

THE TECHNICAL: BLOCK

BLOCK means everything is wrapped in opening/closing tags, such as:

{[hulk]}
<p>I'm Angry. Hulk Smash!</p>
{[endhulk]}
Everything between the opening/closing tags (in green above) is what
the shortcode will reference as {{ blockContent }} when we create it. So

let’s create a shortcode whose job is to… hulkify this…

THE TECHNICAL: BLOCK

Incredible Hulkify

hulk

This shortcode will make text angry. You wouldn’t like it
when it’s angry.

Use {[hulk]} tags around text to make text green, larger,
and in a Google Font called “Frijole”.

<style>
@import url('https://fonts.googleapis.com/css2?family=Frijole&display=swap’);

</style>

{{ blockContent }}

Name:

Tag Name:

Description:

Documentation:

Shortcode Markup:

THE TECHNICAL: BLOCK

Now whenever anyone
wraps text in {[hulk]} and

{[endhulk]} tags anywhere
on the site, it is completely

hulkified!

So we passed the code between our opening/closing tags
back as {{ blockContent }} to our BLOCK shortcode…

Can we pass content back when using INLINE shortcodes?

THE TECHNICAL: BLOCK
VS. INLINE

Similarly to how BLOCK shortcodes use {{ blockContent }} to pass back
content to the shortcode, INLINE shortcodes can use {{ content }} to pass
back. So you COULD accomplish our previous example something like:

{[hulk content:'<p>Hulk SMASH!</p>']}

Everything inside the content parameter (in green above) is what the
INLINE shortcode would reference as {{ content }} when created.

1. Because INLINE can’t handle content with line breaks or single
quotes in it. If you noticed, our BLOCK example said, “I'm Angry. Hulk
Smash!” whereas our INLINE example just said, “Hulk Smash!” because
the single quote in “I'm” would have broken it.

2. It also makes things way harder to read with complicated shortcodes
that have a lot of content being passed, or with multiple parameters,
as it would be a single long string. Don’t do that to the next person
looking at your code. You’re better than that. Clean it up using BLOCK.

THE TECHNICAL: BLOCK
VS. INLINE

So if this is possible… why have BLOCK at all? Why not just pass
everything in INLINE shortcodes?

multiple parameters

THE TECHNICAL: MULTIPLE
PARAMETERS

You aren’t limited to just {{ blockContent }}
or {{ content }} being passed to the
shortcode. In fact, multiple parameters can
be used to alter the shortcode output. Let’s
look at the built-in YouTube shortcode. Here
we see it requires an id parameter for the
video id, but has optional parameters as
well to customize the output:

• width
• showinfo
• controls
• autoplay

THE TECHNICAL: MULTIPLE
PARAMETERS

Using only the required id
parameter gives us this output:

THE TECHNICAL: MULTIPLE
PARAMETERS

Using the width and controls parameters
we can customize the output to 75%
width and hide the playback controls:

A
FT

E
R

B
E

FO
R

E

USING LAVA SHORTCODES

…to Build a Volunteer
Onboarding Portal

Brent Pirolli
CEDARCREEKCHURCH

“Enough with the nerd stuff… Let’s
see what we came here for!”

LET’S GET PRACTICAL

After people are “ready” to get involved, how can they know if
they are READY?

- Did they fully complete Growth Track?
- Do they need a background check?
- Did they pass an audition?
- Do they need training?
- Did they do an interview?
- Do they need to shadow others?
- Do they need to sign agreements? (behavior or confidentiality)
- Did they submit a writing sample?
- WHO DO THEY NEED TO TALK TO?

LET’S GET PRACTICAL

QR code redirects to https://my.cedarcreek.tv/onboarding

{[ServeReqGrowthTrack]}

{[ServeReqGLInt]}
{[ServeReqGLTraining]}

{[ServeReqGLAgreement]}

<div id="servereqs8">
<h4>Group Leader</h4>
{[ServeReqGrowthTrack]}
{[ServeReqGLInt]}
{[ServeReqGLTraining]}
{[ServeReqGLAgreement]}

</div>

Code view:

LET’S GET PRACTICAL – EXAMPLES

A Basic Person Attribute Requirement Check:

{[ServeReqArtsAudition]}

LET’S GET PRACTICAL – EXAMPLES

A Basic Person Attribute Requirement Check:

{[ServeReqArtsAudition]}

LET’S GET PRACTICAL – EXAMPLES

More Complex Use Case – Calculating
Dates and Various If/Else Checks:

{[ServeReqBackgroundCheck]}

LET’S GET PRACTICAL – EXAMPLES

More Complex Use Case – Calculating
Dates and Various If/Else Checks:

{[ServeReqBackgroundCheck]}

Set a standard naming
convention to group codes
together. I used “ServeReq – ”
as a standard starting point.

LET’S GET PRACTICAL - TIPS

Be sure to fill in helpful
Description and Documentation
fields to show people how to use
your shortcodes.

LET’S GET PRACTICAL - TIPS

LET’S GET PRACTICAL - TIPS

The bottom of the shortcode creation page has the option to grant
additional rights. Only grant was is needed; especially if your shortcode
allows user input. Hackers insert SQL commands and such in search
fields and if not properly sanitized, that input can compromise a site.
Basic Person Attribute lookups won’t need any permissions here.

LET’S GET PRACTICAL

If you’d like to dig deeper into what Lava Shortcodes can
do, there is a developer resource called “The Long & Short
on Shortcodes” available at
https://community.rockrms.com/developer

Ben Murphy has a great recipe as well called “A Love
Poem to Lava Shortcodes” that is worth checking out:
https://community.rockrms.com/recipes/249

https://community.rockrms.com/developer
https://community.rockrms.com/recipes/249

LET’S GET PRACTICAL

If you’d like to reference how we built this Volunteer Onboarding Portal,
check out the recipe entitled “Build a Volunteer Onboarding Portal using
Shortcodes” for copy/paste code and step-by-step instructions.
https://community.rockrms.com/recipes/301

…or just go to https://community.rockrms.com and search for “shortcodes”
for that and more recipes using shortcodes.

Any Questions?

https://community.rockrms.com/recipes/301/build-a-volunteer-onboarding-portal-using-shortcodes
https://community.rockrms.com/

	Using Lava Shortcodes
	Who’s this clown?
	What are shortcodes?
	What are shortcodes?
	What are shortcodes?
	Why use LAVA Shortcodes?
	The TECHNICAL
	The TECHNICAL
	The TECHNICAL: INLINE
	The TECHNICAL: INLINE
	The TECHNICAL: INLINE
	The TECHNICAL: BLOCK
	The TECHNICAL: BLOCK
	The TECHNICAL: BLOCK
	The TECHNICAL: BLOCK�					vs. INLINE
	The TECHNICAL: BLOCK�					vs. INLINE
	The TECHNICAL: MULTIPLE�			 PARAMETERS
	The TECHNICAL: MULTIPLE�			 PARAMETERS
	The TECHNICAL: MULTIPLE�			 PARAMETERS
	Using Lava Shortcodes
	Let’s get practical
	Let’s get practical
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	LET’S GET PRACTICAL – Examples
	LET’S GET PRACTICAL – Examples
	LET’S GET PRACTICAL – Examples
	LET’S GET PRACTICAL – Examples
	LET’S GET PRACTICAL - tips
	LET’S GET PRACTICAL - tips
	LET’S GET PRACTICAL - tips
	Let’s get practical
	Let’s get practical

