

Hello World
Prerequisites:

As of Rock v17 you'll want Visual Studio 2022 or Visual Studio Community 2022
(free), and a Microsoft SQL Server database version 2019 or newer (including the
free SQL Server 2019 Express editions).

As of Rock v13 you'll need the Node.js developlment tools/Workload installed via
Visual Studio Installer. See this Technical Release Note for v13 here.

Everyone knows the HelloWorld tutorial. We'll create a do-nothing, barebones Hello
World Block from scratch and show you how to load it onto a page in your own Rock.

We strongly encourage you to get started and actually perform each step as you're
reading. The easiest way to get your custom development environment up and running
is to pull the develop branch from the Rock repo on Github.

Note:

Throughout the rest of the tutorial you'll see variations of the domain
"RockSolidChurch.org". This is just a generic placeholder. You should replace it
with your organization's domain name.

Step 1 - Add New Item
In the Solution Explorer pane (to the right of your main window by default), find your
RockWeb\Plugins\org_rocksolidchurch\ then right click it and select Add New Item . Next,

under Visual C#, choose "Web User Control" and give it the name HelloWorld.ascx.

Version: 1.3.0 Last Updated: 1/16/20251 of 34

http://www.visualstudio.com/downloads/download-visual-studio-vs#d-express-web
https://www.hanselman.com/blog/download-sql-server-express
https://community.rockrms.com/developer/changelog#1.13.0
https://github.com/SparkDevNetwork/Rock

Add New Item

Press Add so you can start editing.

Step 2 - Edit Markup
Edit the markup in the HelloWorld.ascx and add the defacto text, Hello World. You can
spice it up with a little HTML markup if you wish - but don't go too crazy yet.

Version: 1.3.0 Last Updated: 1/16/20252 of 34

Editing your markup in the .ascx

Step 3 - Edit Code
Edit the code file called HelloWorld.ascx.cs (which can be made visible by expanding
HelloWorld.ascx in the Solution Explorer) and change its inheriting class from the
default System.Web.UI.UserControl to Rock.Web.UI.RockBlock. Doing that gives your
standard ASP.Net usercontrol the super-powers of a Rock block. We'll show you how
that happens a little bit later.

Version: 1.3.0 Last Updated: 1/16/20253 of 34

Editing your markup in the .ascx

That's it. Now we'll show you how easy it is to register your new block and add it to a
page so you can see it in action.

Step 4 - Add the block to a zone
Start Rock from inside Visual Studio by pressing F5 and log in as the Admin.

Logging into your Rockit

The default password for the Admin user is admin .

You could create a new page and so forth, but let's keep this simple and just add your
new block to the main home page. You can read more about adding blocks and pages in
the Designing and Building Websites Using Rock guide.

1. Select the (Page Zone Editor) button in the page’s Admin Toolbar, which can

be found as you hover the cursor at the bottom right of your screen.
2. (That should highlight all of the zones on the page for you.)
3. Hover over the fly-out toolbar for the zone you wish to add the block to and click

its (Zone Blocks) button. This will bring up the zone's block list.

Version: 1.3.0 Last Updated: 1/16/20254 of 34

/Rock/BookContent/14/14#addingcontenttorock

Zone 'fly-out-toolbar'

4. Next, click the (Add Block) button to add the block to the layout. Skip the Name

field for the moment and select your new "Hello World" block from bottom of the
Type dropdown list (hint: you can type "Hello" to find it quicker).

Add New Item

5. Click the Save button.

6. Now that you've added your block, click the Done link and the page will reload with

your Hello World block now on the page.

How did that happen?

You may have noticed you never actually registered your new block the way you
have to with other CMS systems. That's because Rock automatically registers
blocks when they are discovered in your Plugins folder. Pretty cool, right?

Version: 1.3.0 Last Updated: 1/16/20255 of 34

Hello World

Need code?

If you want the code for this section you can download it right from Github.

Version: 1.3.0 Last Updated: 1/16/20256 of 34

https://github.com/SparkDevNetwork/Rockit/archive/tutorial-01.zip
https://github.com/SparkDevNetwork/Rockit/archive/tutorial-01.zip

Fetching Data
Now that you've seen your code run in Rock, let's actually fetch some existing data from
Rock. We're going to build a block that lists all the names of everyone in the database.

A block that fetches data

Step 1 - Copy sample block
Let's create a new block but this time let's save some time by starting with the example
Stark block that comes shipped with Rock.

Create a new Tutorials folder in RockWeb\Plugins\org_rocksolidchurch\ and copy the
StarkDetail.ascx file (along with its .ascx.cs file) from the RockWeb\Blocks\Utility\ into it.
Rename the StarkDetail.ascx file HelloWorldFetchingData .

Tip:

We're using a "Tutorials" folder to keep our related code blocks nice and
organized. It's a good idea to organize your associated blocks together in a
common folder and project name.

Step 2 - Update classname/namespace
Now let's make this our own. We need to edit the classname and namespaces so that
our code does not collide with any other existing code. Edit the
HelloWorldFetchingData.ascx file and change the
Inherits="RockWeb.Blocks.Utility.StarkDetail" to
Inherits="RockWeb.Plugins.org_rocksolidchurch.Tutorials.HelloWorldFetchingData" ,
remembering to replace org_rocksolidchurch with our own organization's namespace.

Version: 1.3.0 Last Updated: 1/16/20257 of 34

HelloWorldFetchingData.ascx

Similarly, update the namespace in the HelloWorldFetchingData.ascx.cs from
RockWeb.Blocks.Utility to RockWeb.Plugins.org_rocksolidchurch.Tutorials and
update the class name from StarkDetail to HelloWorldFetchingData .

You'll also need to ensure that the code has the following using statements:

using System;

using System.ComponentModel;

using System.Linq;

using System.Web.UI;

using System.Web.UI.WebControls;

using Rock.Data;

using Rock.Model;

using Rock.Attribute;

You probably noticed the three lines just above the class definition called DisplayName,
Category, and Description. These class decorator attributes are used to organize the
list of blocks in Rock. Set the DisplayName with an appropriate name for your block and
the Category using the convention of "OrganizationName > Project". Don't forget to
include a concise explanation of the block in the Description field too.

Version: 1.3.0 Last Updated: 1/16/20258 of 34

HelloWorldFetchingData.ascx.cs

Step 3 - Markup
We need a place to put all those names we're about to fetch. The Rock:Grid is a perfect
UI control for this sort of thing. Edit the markup in the HelloWorldFetchingData.ascx
and replace the <ContentTemplate> section with this:

<ContentTemplate>

 <Rock:Grid ID="gPeople" runat="server" AllowSorting="true">
 <Columns>
 <asp:BoundField DataField="FirstName" HeaderText="First Name" />
 <asp:BoundField DataField="LastName" HeaderText="Last Name" />
 </Columns>
 </Rock:Grid>

</ContentTemplate>

That's a grid with two columns. One for the person's first name and one for their last
name.

Step 4 - Code
Now we can add code to go and fetch the people data. We'll use Rock's PersonService()
class to get all people, and then bind it to the data-source of our grid. Edit the code in
HelloWorldFetchingData.ascx.cs . Find the OnLoad() Base Control Method. Replace it
with the following code:

protected override void OnLoad(EventArgs e)
{
 base.OnLoad(e);

Version: 1.3.0 Last Updated: 1/16/20259 of 34

 if (!Page.IsPostBack)
 {
 var items = new PersonService(new RockContext()).Queryable().ToList();
 gPeople.DataSource = items;
 gPeople.DataBind();
 }
}

Step 5 - Go Look
Press F5 in Visual Studio to start Rock then add the block to a page just like you did in

the first tutorial. You should see a simple grid listing all the people in your database.

The results

Version: 1.3.0 Last Updated: 1/16/202510 of 34

Uh oh!

Don't see anyone listed? Try adding some fake people data to your database. Use
the Sample Data block found under Admin Tools > Power Tools.

Need code?

The code for this section can be downloaded right from Github.

Version: 1.3.0 Last Updated: 1/16/202511 of 34

https://github.com/SparkDevNetwork/Rockit/archive/tutorial-02.zip
https://github.com/SparkDevNetwork/Rockit/archive/tutorial-02.zip

Configurable Blocks
You're making great progress. Now let's continue with the previous tutorial and show
you how to make the block configurable using Block Attributes.

Reviewing Your Options
The grid we created might list thousands of records. Perhaps we should limit it to
include only males? You could hardcode that logic into a Where clause like this:

var items = new PersonService(new RockContext()).Queryable()
 .Where(p => p.Gender == Gender.Male).ToList();

However, it would be smarter to make the gender choice a configurable setting. This is
where Block Attributes come in handy. They are one of Rock's amazingly powerful
features.

Let's see how easy it is to add a configuration setting to the block.

Step 1 - Add an Attribute
Edit the HelloWorldFetchingData.ascx.cs file and add a CustomRadioListField attribute
just above the class definition like this:

using Rock.Attribute;

// ...

[CustomRadioListField("Gender Filter", "Select in order to list only records for that gend
er",
 "1^Male,2^Female", required: false)]
public partial class HelloWorldFetchingData : Rock.Web.UI.RockBlock
{
 //...

Note:

The using Rock.Attribute; gives you access to all kinds of different block
attributes in Rock.

Adding the CustomRadioListField allows the administrator to optionally pick either Male
or Female in the block property settings. It's optional because we've set the 'required'
parameter to false.

Version: 1.3.0 Last Updated: 1/16/202512 of 34

In a few minutes once you're done and the block is on a page, you can access these
settings by clicking the (Block Configuration) button in the Admin Toolbar followed

by the (Block Properties) button from the block's fly-out menu.

HelloWorldFetchingData.ascx

But first let's continue and write the code that fetches that value set by the
administrator.

Step 2 - Get and Use the Attribute Value
Fetch the selected gender value using Rock's GetAttributeValue() method by passing it
the attribute's key, GenderFilter . The key is just the attribute name with all spaces
removed.

protected override void OnLoad(EventArgs e)
{
 base.OnLoad(e);

 if (!Page.IsPostBack)
 {
 var genderValue = GetAttributeValue("GenderFilter");

Now use the value to limit the query. Let's change our variables a bit so we only perform
the Where() clause when the administrator actually selected a particular gender. Then
call the ToList() method last, right as we're setting it to the grid's data-source.

var query = new PersonService(new RockContext()).Queryable();

if (! string.IsNullOrEmpty(genderValue))
{
 Gender gender = genderValue.ConvertToEnum<Gender>();
 query = query.Where(p => p.Gender == gender);

Version: 1.3.0 Last Updated: 1/16/202513 of 34

}

gPeople.DataSource = query.ToList();
gPeople.DataBind();

Note:

Notice the use of the handy ConvertToEnum() extension method to convert our 1
and 2 string values into a proper Gender enumeration? The using Rock; gives
you access to many useful extension methods we've created for you.

Final Code
When finished, your entire *.cs file should look something like this:

using System;
using System.ComponentModel;
using System.IO;
using System.Linq;
using System.Web.UI;
using System.Web.UI.WebControls;

using Rock;
using Rock.Data;
using Rock.Model;
using Rock.Web.Cache;
using Rock.Web.UI.Controls;
using Rock.Attribute;

namespace RockWeb.Plugins.org_rocksolidchurch.Tutorials
{
 /// <summary>
 /// Template block for developers to use to start a new block.
 /// </summary>
 [DisplayName("Hello World Fetching Data")]
 [Category("rocksolidchurch > Tutorials")]
 [Description("A simple block to fetch some data from Rock.")]

 [CustomRadioListField("Gender Filter", "Select in order to list only records for that
gender",
 "1^Male,2^Female", required: false)]
 public partial class HelloWorldFetchingData : Rock.Web.UI.RockBlock
 {
 #region Base Control Methods

 /// <summary>
 /// Raises the <see cref="E:System.Web.UI.Control.Load" /> event.
 /// </summary>
 /// <param name="e">The <see cref="T:System.EventArgs" /> object that contains the
event data.</param>
 protected override void OnLoad(EventArgs e)
 {
 base.OnLoad(e);

 if (!Page.IsPostBack)
 {
 var genderValue = GetAttributeValue("GenderFilter");

 var query = new PersonService(new RockContext()).Queryable();

Version: 1.3.0 Last Updated: 1/16/202514 of 34

 if (!string.IsNullOrEmpty(genderValue))
 {
 Gender gender = genderValue.ConvertToEnum<Gender>();
 query = query.Where(p => p.Gender == gender);
 }

 gPeople.DataSource = query.ToList();
 gPeople.DataBind();
 }
 }

 #endregion
 }
}

Depending how you set the block property, you'll see different results.

When the block property is set to male you'll see only the men:

Gender block property set to Male

...and only women when the block property is set to female:

Version: 1.3.0 Last Updated: 1/16/202515 of 34

Gender block property set to Female

Need code?

The code for this section can be downloaded right from Github.

Version: 1.3.0 Last Updated: 1/16/202516 of 34

https://github.com/SparkDevNetwork/Rockit/archive/tutorial-03.zip
https://github.com/SparkDevNetwork/Rockit/archive/tutorial-03.zip

Connecting Blocks
It would be nice if our block would take you to the person's details when you click a
name, right? Let's make that happen.

Step 1 - Add an event handler to the grid
First we'll set an event handler named gPeople_RowSelected for the OnRowSelected
property of the grid. We also need to let the grid know that the Id property of an item
in the grid represents the key/identifier for the item in each row. We do this by adding
DataKeyNames="Id" to the grid's markup. We'll use the key value when we handle the
OnRowSelected event in our code.

<Rock:Grid ID="gPeople" runat="server" AllowSorting="true"
 OnRowSelected="gPeople_RowSelected" DataKeyNames="Id">

Step 2 - Handle that event in code
Now we can write code to do something when a particular row is clicked. Since Rock
already has a page with a named route "~/Person/{0}" for viewing a person's details, all
we need to do is take the person's Id (for the selected row's key) and redirect to the
route.

Edit the *.cs file and add this event handler:

protected void gPeople_RowSelected(object sender, RowEventArgs e)
{
 int personId = (int)e.RowKeyValues["Id"];
 Response.Redirect(string.Format("~/Person/{0}", personId), false);

 // prevents .NET from quietly throwing ThreadAbortException
 Context.ApplicationInstance.CompleteRequest();
 return;
}

That's all there is to it!

That was a bit too easy. What will you do when there is no named route available? Let's
try a different, configuration based approach for those cases. Yep, you guessed it.
Another block property attribute to the rescue.

Step 2 redux - Use a LinkedPage block property
It's a common situation to link your block to another page where a related block lives.
By adding the LinkedPage attribute to your block, the administrator can wire up your

Version: 1.3.0 Last Updated: 1/16/202517 of 34

block to the page of their choosing.

[LinkedPage("Related Page")]

LinkedPage block property

The string "Related Page" is the attribute name and its key is just "RelatedPage".

Change your gPeople_RowSelected handler to call the special NavigateToLinkedPage()
method and pass in the attribute key that has the linked page, the name of a query
string parameter and the value for that parameter. Since we're expecting the admin to
link the block to the Person Profile page, we'll use the PersonId as the parameter and
the person's Id will be the parameter value.

Our code would look like this:

protected void gPeople_RowSelected(object sender, RowEventArgs e)
{
 NavigateToLinkedPage("RelatedPage", "PersonId", (int)e.RowKeyValues["Id"]);
}

Rock will automatically build a redirect link in the form of .../Page/[id-of-related-page]?
PersonId=[id-of-selected-person] (E.g. http://rock.rocksolidchurchdemo.com/page/93?
PersonId=2)

And yes, I tricked you because this new event handler code is even easier than the
previous code.

Need code?

The code for this section can be downloaded right from Github.

Version: 1.3.0 Last Updated: 1/16/202518 of 34

https://github.com/SparkDevNetwork/Rockit/archive/tutorial-04.zip
https://github.com/SparkDevNetwork/Rockit/archive/tutorial-04.zip

Customizing and Securing Blocks
Sometimes you want to show certain features only to certain people or people with a
certain role. Let's add a standard Add button to the bottom of the grid that only shows

up for people who are authorized with "Edit" rights to our block.

Enabled Add button on grid

Step 1 - Check the user's authorization
Use the IsUserAuthorized() method by passing it the name of an action. That method
returns true if the person viewing the block is authorized for that action. When true,
we'll set the grid's Action bar to show the Add button.

Add the using Rock.Security; in the top section of your block to get access to the
Authorization class and add the authorization check to the OnInit method like this:

using Rock.Security;
// ...
protected override void OnInit(EventArgs e)
{
 base.OnInit(e);

 if (IsUserAuthorized(Authorization.EDIT))
 {
 gPeople.Actions.ShowAdd = true;
 }

 // ...

Version: 1.3.0 Last Updated: 1/16/202519 of 34

Note

If it makes more sense for the authorization check to be based on the page where
the block lives, you can do a page authorization check like this:

var currentPage = Rock.Web.Cache.PageCache.Read(RockPage.PageId);
currentPage.IsAuthorized(Authorization.EDIT, CurrentPerson);

Step 2 - Handle the button click
Let's wrap this up by handling the click action for your new Add button. We'll register a
click handler called gPeople_Add in the OnInit() method and then create the handler
method in the appropriate code region.

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);

 if (IsUserAuthorized(Authorization.EDIT))
 {
 gPeople.Actions.ShowAdd = true;
 gPeople.Actions.AddClick += gPeople_Add;
 }

 // ...

}

protected void gPeople_Add(object sender, EventArgs e)
{
 Response.Redirect("~/NewFamily/");

 // prevents .NET from quietly throwing ThreadAbortException
 Context.ApplicationInstance.CompleteRequest();
 return;
}

Once again, we can rely on a built-in named route used for adding new people/families.

Tip

For information about using "Page_Load (OnLoad) vs OnInit" read the
Performance Considerations in the Blocks documentation.

Step 3 - Code cleanup
For best practice sake, let's move our grid data binding code into it's own method called
BindGrid() . This will set us up for one more little improvement we'll cover in the next
step.

protected override void OnLoad(EventArgs e)
{
 base.OnLoad(e);

 if (!Page.IsPostBack)

Version: 1.3.0 Last Updated: 1/16/202520 of 34

 {
 BindGrid();
 }
}

// ...

protected void BindGrid()
{
 var genderValue = GetAttributeValue("GenderFilter");

 var query = new PersonService(new RockContext()).Queryable();

 if (!string.IsNullOrEmpty(genderValue))
 {
 Gender gender = genderValue.ConvertToEnum<Gender>();
 query = query.Where(p => p.Gender == gender);
 }

 gPeople.DataSource = query.ToList();
 gPeople.DataBind();
}

Step 4 - That little improvement
Have you noticed that you've had to reload the page after you change a block property
in order to see it take effect? Let's fix that so the grid refreshes immediately when the
property changes.

The Stark block you started with comes with the necessary event handlers that allows
you do something when the block's properties change. You may have even seen those
extra lines in the OnInit method and an empty Block_BlockUpdated() code block. This
Block_BlockUpdated() method is being called but it won't do anything until you add
some appropriate code.

Now that we moved our data binding code to its own BindGrid() method, we can call it
in Block_BlockUpdated() like this:.

protected void Block_BlockUpdated(object sender, EventArgs e)
{
 BindGrid();
}

Now go and change the gender setting and watch the magic.

Best Practice

It's a best practice to handle the BlockUpdated event intelligently whenever
possible.

Here is the final, complete code:

using System;
using System.ComponentModel;
using System.IO;
using System.Linq;

Version: 1.3.0 Last Updated: 1/16/202521 of 34

using System.Web.UI;
using System.Web.UI.WebControls;

using Rock;
using Rock.Data;
using Rock.Model;
using Rock.Web.Cache;
using Rock.Web.UI.Controls;
using Rock.Attribute;
using Rock.Security;

namespace RockWeb.Plugins.org_rocksolidchurch.Tutorials
{
 /// <summary>
 /// Template block for developers to use to start a new block.
 /// </summary>
 [DisplayName("Hello World Fetching Data")]
 [Category("rocksolidchurch > Tutorials")]
 [Description("A simple block to fetch some data from Rock.")]

 [CustomRadioListField("Gender Filter", "Select in order to list only records for that
gender",
 "1^Male,2^Female", required: false)]
 [LinkedPage("Related Page")]
 public partial class HelloWorldFetchingData : Rock.Web.UI.RockBlock
 {
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);

 if (IsUserAuthorized(Authorization.EDIT))
 {
 gPeople.Actions.ShowAdd = true;
 gPeople.Actions.AddClick += gPeople_Add;
 }

 // This event gets fired after block settings are updated.
 this.BlockUpdated += Block_BlockUpdated;
 this.AddConfigurationUpdateTrigger(upnlContent);
 }

 protected override void OnLoad(EventArgs e)
 {
 base.OnLoad(e);

 if (!Page.IsPostBack)
 {
 BindGrid();
 }
 }

 protected void Block_BlockUpdated(object sender, EventArgs e)
 {
 BindGrid();
 }

 protected void gPeople_Add(object sender, EventArgs e)
 {
 Response.Redirect("~/NewFamily/");

 // prevents .NET from quietly throwing ThreadAbortException
 Context.ApplicationInstance.CompleteRequest();
 return;
 }

Version: 1.3.0 Last Updated: 1/16/202522 of 34

 protected void gPeople_RowSelected(object sender, RowEventArgs e)
 {
 NavigateToLinkedPage("RelatedPage", "PersonId", (int)e.RowKeyValues["Id"]);
 }

 protected void BindGrid()
 {
 var genderValue = GetAttributeValue("GenderFilter");

 var query = new PersonService(new RockContext()).Queryable();

 if (!string.IsNullOrEmpty(genderValue))
 {
 Gender gender = genderValue.ConvertToEnum<Gender>();
 query = query.Where(p => p.Gender == gender);
 }

 gPeople.DataSource = query.ToList();
 gPeople.DataBind();
 }
 }
}

Need code?

The code for this section can be downloaded right from Github.

Version: 1.3.0 Last Updated: 1/16/202523 of 34

https://github.com/SparkDevNetwork/Rockit/archive/tutorial-05.zip
https://github.com/SparkDevNetwork/Rockit/archive/tutorial-05.zip

Appendix - New Developer Environment Setup
If you're a relatively new .Net web developer we can walk you through a few things to
help get you started on the right foot. If you're not a .Net developer already, we
probably can't make you one by reading this chapter. In that case you would be best
served by going through some .Net introductions or tutorials.

Installing Your Microsoft SQL Server (Database) Environment
We like to setup the database first. If you're licensed to use one of the paid versions of
SQL Server go ahead and download that now. Otherwise you can download and use the
free SQL Server Express version.

Going through the installer can be an interesting experience. For the most part we've
found you can typically use the default settings -- except for a few places. In those spots
you really need to be careful and set things just right:

Instance Configuration - On the Instance Configuration page, choose Default
Instance with Instance ID: MSSQLSERVER (you can create a named instance if you
want, but you might have to figure out your connection strings on your own).

Version: 1.3.0 Last Updated: 1/16/202524 of 34

https://www.asp.net/web-forms/overview/getting-started/getting-started-with-aspnet-45-web-forms/introduction-and-overview
https://www.lynda.com/NET-tutorials/C-NET-Programming/440660-2.html
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

Instance Configuration

Feature Selection - On the Feature Selection page, you'll need at a minimum:
Database Engine Services, Management Tools, and SQL Client Connectivity SDK.

Version: 1.3.0 Last Updated: 1/16/202525 of 34

Feature Selection

Database Engine Configuration - On the Database Engine Configuration page,
make sure to choose Mixed Mode. This is important! If you get weird errors later
when trying build the Rock Database for the first time, an incorrect setting here
might be the problem. Also, enter some password for the SA account. Then, click
Add Current User, and make sure it adds your account. By the way, you probably
won't ever really need to login as SA if you do the Add Current User. Then press
Next, and click thru the rest of the OK and Next buttons until the install is
complete.

Version: 1.3.0 Last Updated: 1/16/202526 of 34

Database Engine Configuration

You will need to create a SQL Server Login called "RockUser". (You can actually use any
name you wish but we recommend RockUser to keep things simple for now.) You will
need to use SQL Server Management Studio do to this (which would have been installed
when you did the Install SQL Server step, or if you add the Management Tools feature to
an existing SQL Server install.

1. After logging in, in the Object Explorer window, navigate to localhost | Security |
Logins. Next, right-click on Logins and click "New Login...".

New Login

Version: 1.3.0 Last Updated: 1/16/202527 of 34

2. On the Login - New page, put RockUser as the Login name and choose SQL Server
authentication. For the password you'll probably want to uncheck the "Enforce
password" and "User must change password" checkboxes. NOTE: You'll also need
to copy this password to your web.ConnectionStrings.config as described in the
next chapter. Don't press OK yet, do the next step (Server Roles) first!

Login Properties, General

3. While still on the Login - New page, select "Server Roles" then check "dbcreator"
and "public". Now you can press OK, and your SQL Server RockUser login is
created.

Version: 1.3.0 Last Updated: 1/16/202528 of 34

Login Properties, Server Roles

Installing Visual Studio
If you're licensed to use one of the paid versions of Visual Studio go ahead and
download it now. Otherwise you can download the free "Visual Studio Community"
version. If you run into any trouble Microsoft even has a Live Chat support to assist you.

Visual Studio Workloads

Run the Visual Studio Installer and select "Modify" on your installation. Then install
these workloads:

"ASP.NET and web development"
"Node.js development"
(optional) ".NET desktop development"

Version: 1.3.0 Last Updated: 1/16/202529 of 34

https://www.visualstudio.com/downloads/#d-express-web
http://landinghub.visualstudio.com/visual-studio-installer-support

Visual Studio Workloads

Troubleshooting

If Visual Studio crashes upon running, make sure the Visual Studio "Start" > "Web
Browser" has a browser selected.

Visual Studio Debug Web Browser Setting

Version: 1.3.0 Last Updated: 1/16/202530 of 34

Visual Studio Debug with missing Web Browser

Running

Once you have Visual Studio up and running, you're all set to open up the Rock solution
file. Once you open that you'll want to adjust your web.ConnectionStrings.config file as
described in the Setup Appendix.

Version: 1.3.0 Last Updated: 1/16/202531 of 34

Appendix - Setup
Opening your Solution
These are the steps you'll follow the first time you use the Rock solution.

1. Open the Rock.sln file. This should launch Visual Studio 2022.
2. Edit the web.ConnectionStrings.config.sample and replace the [server_name] ,

[database_name] , [user_name] , and [password] with the values for your system.
When you're done it might look something like this:

<add name="RockContext"
 connectionString="Data Source=localhost;Initial Catalog=RockTestDB;
 User Id=MyRockUser; password=yOursShouldBeBetter;MultipleActiveResultSets=true"
 providerName="System.Data.SqlClient"/>

Important!

Make sure the SQL User Id you use has the dbcreator role. The first time
Rock runs it will see that the database does not exist and will need to create
it for you.

Note: If using SQL Express / LocalDB Edition, your connection string will look a bit
different and also needs to include some other parameters as seen here:

<add name="RockContext"
 connectionString="Server=(localdb)\v11.0; Initial Catalog=RockTestDB;
 Integrated Security=true;MultipleActiveResultSets=true; Persist Security Info=true
;"
 providerName="System.Data.SqlClient"/>

3. Then rename the file to web.ConnectionStrings.config
4. Go to Tools > NuGet Package Manager > Manage NuGet Packages for Solution...
5. If you see a Restore button you'll need to click it in order to fetch the required

open-source libraries Rock needs to compile. We don't ship them in the SDK in
order to keep the file size small. After clicking "Restore" you can close the window.

Version: 1.3.0 Last Updated: 1/16/202532 of 34

Manage NuGet Packages for Solution

Press F5 to build and run (debug) Rock. After completing the compile/build process, it
will start your web-browser (on something like http://localhost:57566/) and you'll see a
white screen for several minutes while it creates the database.

When finished, you will see a Login screen:

Login

...and after logging in with 'admin' you should see this:

Version: 1.3.0 Last Updated: 1/16/202533 of 34

Home

That's it. Happy coding!

Updating your Environment

Steps to keep your environment up-to-date with upcoming Rock releases:

1. Subscribe to our developer group (in the Community Developer Subscribe
sidebar) to get notified when a release goes alpha.

2. Join the #develop channel on our community.rockrms.com/chat. Let us know
you're new and a friendly developer in the community should greet you there.

3. Pull the latest from the Rock repo as needed. We use a Gitflow Branching Strategy
so if you wanted to only work from a particular release, you can pull that particular
release‐x.y.z branch. Hotfix branches are hotfix‐x.y.z .

Version: 1.3.0 Last Updated: 1/16/202534 of 34

/Developer
https://community.rockrms.com/chat
https://github.com/SparkDevNetwork/Rock/wiki/Git-Branching-Strategy

	Hello World
	Fetching Data
	Configurable Blocks
	Connecting Blocks
	Customizing and Securing Blocks
	Appendix - New Developer Environment Setup
	Appendix - Setup

