

More Than Blocks
There is more to Rock than blocks. Under the covers Rock is a framework full of rich
entities that let you manage people, families, groups, campuses, locations, dictionary-
like-lists, and much more. And if those things don't meet your needs, you can even
create your own custom entities within the framework too.

In this book we'll tell you a little about the major Rock entities, and then wrap up with
details you'll need to develop your own custom entities. But first let's talk more about
the concept of an entity.

What Are Entities?
The word "entity" is just a generic term that refers to a code class that models and
manages a particular type of data. These classes are built on something called the
Entity Framework (EF). EF is Microsoft's recommended data access technology -- but
don't worry! You do not need to know all the ins-and-outs of EF unless you really want
to. We only mention it because some of the conventions you'll read below come from
that framework. Ok, back to our story...

Going Deep

If you are new to Entity Framework and want to learn more about what's going on
behind the scenes in Rock, you can read the Get Started with Entity Framework
and/or the Working With DbContext MSDN articles.

Let's get real by talking specifics. And, since everyone knows what a person is, we'll use
it as we describe how entities work.

The Person entity is actually the Person.cs class. That class models the properties of a
person including FirstName, LastName, BirthDate, Gender, and Email just to name a
few. So, when code somewhere creates a new Person object and saves it, a new record
is added to the database which contains all the person's property values... mostly.

Some classes have virtual properties (such as the Person class Age property). These
virtual properties decorated with the [NotMapped] attribute don't actually store their
values in the database. Instead they are basically computed via code in a getter method
as seen here:

[NotMapped]
[DataMember]

Version: 1.0.0 Last Updated: 6/16/20251 of 57

https://msdn.microsoft.com/en-us/data/aa937723
https://msdn.microsoft.com/en-us/ee712907
https://msdn.microsoft.com/en-us/jj729737

public virtual int? Age
{
 get
 {
 if (BirthYear.HasValue)
 {
 DateTime? bd = BirthDate;
 if (bd.HasValue)
 {
 DateTime today = RockDateTime.Today;
 int age = today.Year ‐ bd.Value.Year;
 if (bd.Value > today.AddYears(‐age)) {age‐‐};
 return age;
 }
 }
 return null;
 }
 private set { }
}

Note:

Virtual properties are almost always decorated with the [NotMapped] data
annotation (or C# attribute) which is a signal to Entity Framework to not store the
value in the database. The [DataMember] annotation is used to tell the framework
to serialize these properties because we've decorated our classes with the
[DataContract] attribute. If this sort of thing interests you, read about it on the
MSDN site.

Some virtual properties hold other entities or whole collections of entities. For example,
the person PrimaryAlias property holds a PersonAlias entity, but the PhoneNumbers
property holds a collection of PhoneNumber entities.

[DataMember]
public virtual ICollection<PhoneNumber> PhoneNumbers
{
 get { return _phoneNumbers; }
 set { _phoneNumbers = value; }
}
private ICollection<PhoneNumber> _phoneNumbers;

For the virtual properties that are entities but not collections, you will see two parts.
One property holds the entity as a "navigation property" and the other property holds
the associated Id. Let's look at the person's Photo property. Here you see a Photo and a
PhotoId property:

[DataMember]
public virtual BinaryFile Photo { get; set; }

[DataMember]
public int? PhotoId { get; set; }

This is very cool because EF will Lazy Load the Photo property-entity if you need to refer
to it. In those cases, you have full access to that entity as shown here:

Version: 1.0.0 Last Updated: 6/16/20252 of 57

https://docs.microsoft.com/en-us/aspnet/web-api/overview/formats-and-model-binding/json-and-xml-serialization#what-gets-serialized
https://msdn.microsoft.com/en-us/library/system.runtime.serialization.datacontractattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/data/jj574232#lazy

// assuming you have a person object/instance already...
var personPhotoFile = person.Photo.FileName;

I don't know about you, but that just makes me a little giddy inside.

Going Deep

While it is cool, lazy loading comes at a performance cost: meaning behind the
scenes the framework has to issue another database query to get the value. So, if
you know you're going to need it, tell the framework to eagerly pre-load your
navigable object properties as discussed in the 101 Launchpad book on Loading
Entities.

To make it work like that we had to tell EF about this relationship via a
PersonConfiguration (Entity Configuration) class in our Person.cs class:

///

/// Person Configuration class.
///

public partial class PersonConfiguration : EntityTypeConfiguration<Person>
{
 public PersonConfiguration()
 {
 /// ...
 this.HasOptional(p => p.Photo).WithMany()
 .HasForeignKey(p => p.PhotoId).WillCascadeOnDelete(false);
 /// ...
 }

Don't Worry

Again, you don't really need to understand this last part unless you're creating
your own custom entities. We'll cover that in the last several chapters of this book.

Version: 1.0.0 Last Updated: 6/16/20253 of 57

http://www.rockrms.com/Rock/BookContent/16#eagerloadingproperties

Common Entities
Now that we've got some of the inner workings out of the way, let's learn a little about
each of the primary entities in Rock. This section might seem a bit tricky because
entities often refer to other entities that we haven't explained yet -- please bear with us.
If you read something that's not quite making sense, just keep reading and it should
become clear.

Help Us Help Everyone

If you think we've missed the mark trying to explain something, please let us know.
Use the little megaphone "Improve" feature (available online on the right side of
the page) and give us the details on how you might write it. We love it when you
help us help everyone.

Person
What can we tell you about this that you don't already know? This is a pretty
straightforward entity except perhaps its relationship to the PersonAlias that we
touched on in the last book. The PersonAlias is almost always the glue that connects
other entities to the Person entity. You'll do well to not forget this tidbit.

Here the more commonly used properties you should consider when working with
people in your code:

FirstName, NickName, LastName, FullName, FullNameFormal,
FullNameReversed - You get the drift. These are their various names in various
formats. Many of these are virtual properties that are just computed from the first
and last name properties.
EmailPreference - Tells you whether when it's ok or not ok to use their email (ok,
never, or no mass/bulk emails, etc.)
BirthDay, BirthMonth, BirthYear - Of the date of birth. Sometimes you won't
have the BirthYear (because it can be a sensitive topic for some people -- ahem.)
GraduationDate - This is the date they will have completed their secondary
schooling (not their higher education or vocational schooling). In the United States
this is their High School graduation date.
PhotoUrl - This is a URL to their photo or if no photo exists, it will be a URL to the
generic male/female/child SVG image.
RecordStatusValue - This is the status of their record. You know...whether they're
active, inactive, or pending. This value is actually a DefinedValue which we'll explain

Version: 1.0.0 Last Updated: 6/16/20254 of 57

in greater detail in the DefinedType DefinedValue section.
IsDeceased - A Boolean flag that would indicate they are deceased.
ConnectionStatusValue - This tells you the nature of their connection with your
organization. This is also a DefinedValue which comes from the list of possible
options of the Connection Status DefinedType.
PrimaryAlias - This is the person's primary PersonAlias.
Aliases - A collection of all of the person's PersonAlias records. This collection
slowly builds over time as a person's duplicate records are merged together.

Some properties are not required, so keep in mind you may not have this data for some
people:

Email - The person's email address.
PhoneNumbers - A collection of their PhoneNumber entities.
Users – A collection of UserLogin entities for the person. Similar to the Aliases, a
person can have one or more UserLogins as their duplicates records are merged.

Here are a few very handy methods you can use on a person or via the Person class:

GetAnchorTag(...) – This builds a HTML anchor/link tag to the person's profile. You
just need to pass it the URL to Rock's root. You'll see this commonly called like this:
GetAnchorTag(ResolveRockUrl("/"))

GetEmailTag(...) – This builds an HTML email anchor tag for sending an email to
the person through Rock’s communication system. The HTML will also note
whether or not the person has an email address, allows email, allows bulk emails,
etc.
GetPersonPhotoImageTag(...) – This will build the markup necessary for a photo
of the given person or person alias.

// Get the HTML for the person’s photo as a 50x50 image.
lPersonIconHtml.Text = Person.GetPersonPhotoImageTag(aPersonAlias, 50, 50);

GetHomeLocation() – This method makes it trivial to fetch a person’s home
address:

var homelocation = person.GetHomeLocation();

That's It?

We don't want to bore you to death by listing out every single property a Person
or the other entities have. You can find the complete list in the Model Map block
under Power Tools which shows the Rock model entities. Additionally, there is
now a REST "API Docs" reference (found under your Rock system's Power Tools)
which shows you all entities that have REST endpoints you can use with your
custom code.

Attributes
Before we move on to the next entity, we should mention one very important thing:
Attributes. Attributes can be tied to any entity, which means you can track specific
values for any instance of that entity. For the Person entity, you'll notice under Admin

Version: 1.0.0 Last Updated: 6/16/20255 of 57

https://rock.rocksolidchurchdemo.com/page/479
http://rock.rocksolidchurchdemo.com/api/docs/index

Tools > General Settings we set up the Person Attributes page. This lets you
add/manage custom attributes for the Person entity.

Loading Attribute Values

Before you try to access an entity's attribute values you must first load the attributes
as seen in this example:

person.LoadAttributes();
string personAbilityLevel = person.GetAttributeValue("AbilityLevel");

Saving Attribute Values

Before you save an entity's attribute values you have to load the attributes as seen in
this example:

group.LoadAttributes(rockContext);
// After you’ve loaded the attributes... you can set and save values
group.SetAttributeValue("Topic", smallGroupTopicDefinedValue.Guid.ToString());
group.SaveAttributeValues(rockContext);

Group
Groups represent collections of people. Serving teams are groups, as are home and
neighborhood "Small Group" groups. In fact, as you will read below, you will see that
security roles and families are groups too.

Groups will always have a Name and a GroupType. There are all kinds of GroupTypes in
Rock. Your code will use this to distinguish and handle things differently for different
types of groups. (Read more about GroupTypes below.)

Unless it is a top level group, it will probably have a ParentGroup, and unless it's a leaf
group, it will have a Groups property which holds the collection of its child groups. A
group will also generally have a Members property which holds a collection of
GroupMember entities, and will sometimes have a GroupLocations property that holds
a collection of locations (GroupLocation) associated with the group.

The rest of the properties are pretty self-explanatory too.

Code Recipes

Here are a few code recipes for some typical situations you may be in...

When adding a new person, if you also wish to create their new family (group) too, you
can use the PersonService's handy SaveNewPerson() method. It will return the newly
created group in case you want to do something with it.

// once you have your person object setup...
var familyGroup = PersonService.SaveNewPerson(person, rockContext, campusId, false);

When adding a person to a group you will usually want to set their group member
status and the role that is the default for that particular group type.

// Adds a person (using an Id) to a group with the default role.
GroupMember groupMember = new GroupMember
{
 PersonId = personId,

Version: 1.0.0 Last Updated: 6/16/20256 of 57

 GroupMemberStatus = GroupMemberStatus.Active,
 GroupRoleId = aGroup.GroupType.DefaultGroupRoleId.Value
};
aGroup.Members.Add(groupMember);

Listing all addresses of a group:

var html = new StringBuilder();
var groupId = 68;
var group = new GroupService(new RockContext()).Get(groupId);
foreach (var groupLocation in group.GroupLocations)
{
 var location = groupLocation.Location;
 html.AppendFormat("
{0}{1}{2}

{3}, {4} {5}
",
 location.Street1,
 (string.IsNullOrEmpty(location.Street2) ? string.Empty : "
"),
 location.Street2,
 location.City,
 location.State,
 location.PostalCode);
}

lList.Text = string.Format("
{0}

", html.ToString());

GroupType
Every group has a specific group type. The group type establishes attributes and has
properties that helps control part of the group's behavior. For example, any groups
that are of type "Check in by Grade" will have a "Grade Range" attribute which is
inherited from that group type. For an example of this in action (controlling behavior),
refer to the check-in related blocks which use a group's GroupTypePurposeValue to
decide whether or not to show/use a particular group for check-in purposes.

Group Types will always have:

Name – The name by which the group is known.
GroupTerm – This defines the term used to describe groups of this type. Examples
are: group, community, class, family, etc.
GroupMemberTerm – This is the term used to describe the member. Examples
are family member, team member, member, employee, etc.

Group Types may have:

AllowMultipleLocations - Boolean that controls whether or not these groups are
allowed to have multiple locations.
DefaultGroupRole - The default role that a new member should have when placed
into this group type.
InheritedGroupType - If set, indicates which GroupType it inherits settings and
properties from.
ShowInGroupList - Indicates whether these groups are shown in GroupList
blocks.

Version: 1.0.0 Last Updated: 6/16/20257 of 57

ShowInNavigation - Indicates whether these groups are shown in navigation
(such as TreeViews and menus).
TakesAttendance - Flag that indicates whether or not this type supports taking
attendance.
SendAttendanceReminder - Flag that indicates if an attendance reminder should
be sent to group leaders.

GroupMember
A group member is the entity that connects a person and a group. It holds any attribute
values the member has and a property that points to the actual group and person
instances.

Group Members will always have:

Group - The group to which the person belongs.
Person - The person who is in the group.
GroupRole - The role the person has within the group (leader, member, etc.).
These come from the GroupType and are configurable.
GroupMemberStatus - Indicates whether the person is Inactive (0), Active (1), or
Pending (2). This is an enum in Rock.

Code Recipes

Adding a person to a group:

var groupMemberService = new GroupMemberService(rockContext);
var groupMember = new GroupMember();
groupMember.PersonId = person.Id;
groupMember.GroupId = group.Id;
groupMember.GroupRoleId = groupRoleId.Value;
groupMember.GroupMemberStatus = GroupMemberStatus.Active;
if (groupMember.IsValid)
{
 groupMemberService.Add(groupMember);
 rockContext.SaveChanges();
}

It's rather important that you remember to set the group member's role and status as
seen above.

GroupLocation
This holds all the location details for a group. Examples could include a Person/Family's
address, a Business' address, a room where a Bible study meets, etc. Pretty much any
place where a group of people meet or where they are located.

A GroupLocation should always have:

Group – The group to which the address belongs.
Location – The postal/mailing/geographical details for the address. This is another
object class described in the next section.
GroupLocationTypeValue – This will be one of the values from the Location Type
DefinedType for Groups (representing either Home, Meeting Location, Work, or
Previous Address).

Version: 1.0.0 Last Updated: 6/16/20258 of 57

In certain cases it may also have:

Schedule – The date/time details about when the group is at that location.

Location
A location could be a street address, building, floor, room, kiosk location, etc. A location
is also stackable/hierarchical. For example, for a church's campus can have multiple
buildings or facilities, each building can be multi story and a story can have multiple
rooms.

If the location is a place on a campus, it should have:

Name - The common name the location is known by.
CampusId - The Id of the location's campus.
ParentLocation - This will be another location that contains this location. If the
location is a campus, this value will be null.
LocationTypeValueId - This will be one of the Id values from the Location Type
DefinedType (representing either Campus, Building, or Room).

If it is a mailing address it will usually have:

Street1 - The first line of the mailing address.
Street2 - The second (optional) line of a mailing address.
City - The city.
State - The state.
PostalCode - The Zip/postal code of the mailing address.
Country - The optional value indicating the country of the address.

Once geo-coded, a location will have:

GeoPoint - The DbGeography object that holds the latitude and longitude of the
location. This will be null if the location is a GeoFence.
GeoFence - A DbGeography object that holds the set of coordinates that make up
the fence (or perimeter) contains the location.
Latitude - If it's a GeoPoint, this will give you the latitude of the point.
Longitude - If it's a GeoPoint, this will give you the longitude of the point.
GeocodeAttemptedResult - The resulting code given by the service when the
geocode took place. This depends on the service. For example, SmartyStreets will
use their "precision" result described here:
https://smartystreets.com/docs/address
GeocodeAttemptedDateTime - The date the geocoding took place.
GeocodeAttemptedServiceType - The name of the service that performed the
geocoding.

Once "standardized" by one of the Address Standardization services defined under
System Settings > Location Services (if enabled), a location will have:

StandardizeAttemptedDateTime - Represents when the most recent address
standardization attempt was made. If this is not applicable to this location, or if
the address has not been standardized, this value will be null.
StandardizedDateTime - The date and time that the Location's address was
successfully standardized.

Version: 1.0.0 Last Updated: 6/16/20259 of 57

https://smartystreets.com/docs/address

StandardizeAttemptedServiceType - The component name of the service that
last attempted to standardize this Location's address.
StandardizeAttemptedResult - The result code that was returned by the address
standardization service.

Campus
This entity represents the physical or logical site where the organization holds its
activities. For multi-site organizations there should be a campus record for each site.
Many of the primary entities in Rock can be tied to either a single or multiple campuses.

A campus will always have a Name and will usually have:

Location - The actual geographical details about the campus.
PhoneNumber - The main, public office phone number for the campus.
ServiceTimes - The delimited data you put in here is primarily intended to be
displayed on your campus service time's web page. It's not actually structured
data – for that, use the Schedule entity.

Single Campus Special Considerations
Starting with Rock v10, when a Rock system has only 1 campus defined, we want to
ensure that no one using that system has to worry about seeing or picking that single
campus. We want the system to seemlessly just use that single campus and never really
expose it (except in very rare, specific places).

Schedule
This holds the date and time details for some sort of event. It is used with the check-in
system, the group locator system, and the event calendar.

A schedule will usually have:

Name - A friendly name for the schedule.
iCalendarContent - This is the iCal representation of the date/time. Since iCal is
quite sophisticated, you may wish to get the full DDay.iCal.Event object using the
GetCalenderEvent() method. From that object you can programatically access the
properties of the schedule.
EffectiveStartDate - The date that the schedule becomes active.
EffectiveEndDate - The date that the schedule becomes inactive.
WeeklyDayOfWeek - This is the day of the week that the weekly item takes place.
WeeklyTimeOfDay - This is the time of day that the weekly item take place.

DDay.iCal Info

Although this project has been moved to a new code base, you may still find the
examples and information about iCal from this old repository useful, namely the
Event class.

Role

Version: 1.0.0 Last Updated: 6/16/202510 of 57

https://github.com/mdavid/DDay.iCal/blob/dev/DDay.iCal/Components/Event.cs

This is a special entity that represents a security role and has a collection of users that
have the role. Behind the scenes its data is stored in the Group and GroupMember
tables and it is primarily used by Rock’s security system including the Authorization
class.

A role will have:

Name - One ore two words that quickly defined what the role represents.

The Role class also has a method that is used to quickly determine if the given person
has the role:

IsPersonInRole(...) - Returns true if the person is in the role; false otherwise..

DefinedType & DefinedValue
A DefinedType is a dictionary of mostly-unchanging values for a particular thing in Rock.
The thing's individual item values are referred to as DefinedValues. Therefore, if Marital
Status was the DefinedType, then its DefinedValues are Single, Married, Unknown,
Widowed, etc.

Several classic examples of DefinedTypes are Phone Type, Shirt Sizes, Small Group
Topic, Countries, etc.

Defined Values can be categorized, ordered and can be furthered specified by a
FieldType. And, of course they can have Attributes which means you can expand on
them quite a bit. Attributes and AttributeValues are covered in the next chapter.

The benefit of managing these values in this way is that it avoids having to create new
Entity types for each defined type/value that you want to create. Similar to attributes,
these can be created as the need arises without having to change the Rock core or add
a plug-in just to provide additional lookup data.

If you are looking for a good case study showing how far you can go with the DefineType
and DefinedValue, check out the DISC Results DataType. It has nine attributes of varying
datatypes and they are used programmatically by the DiscResults block.

Category
A category is another fairly generic entity type in Rock which can be used to... well...
categorize things. Each category will belong to one Entity type, and categories can be
created in a parent-child hierarchy as well as ordered.

Version: 1.0.0 Last Updated: 6/16/202511 of 57

Example of Prayer Request Categories

There is even a Categories block in Rock that can be configured and bound to any Entity
in order to manage categories for that entity.

Example of Managing Prayer Request Categories

Version: 1.0.0 Last Updated: 6/16/202512 of 57

Advanced Entity Guide
Now let's look at several entities that are a little less common or a little more obscure
than the day to day entities.

Attendance
This represents an instance where a person attended or was scheduled to attend a
group or event. An attendance will essentially always have the following properties:

PersonAliasId - The alias id of the person who did/was to attend.
StartDateTime - The date and time the person checked in.
RSVP - An enum indicating whether or not the person had RSVP'd. (0 = No, 1 = Yes,
2 = Maybe)
DidAttend - A Boolean indicating whether or not the person attended.
ScheduleId - The Schedule Id for which the person did/was to attend.
GroupId - The Group Id for which the person was related to when the check-in
occurred.
SundayDate - The date of the Sunday for the week the attendance occurred.

This represents an instance where a person attended or was scheduled to attend a
group or event. An attendance will essentially always have the following properties:

AttendanceCodeId - The Id to the AttendanceCode that has the security token
that was created for the attendance record.
LocationId - The Location Id where the person did/was to attend.
DeviceId - The device the person used when they checked in.
CampusId - The campus where the attendance occurred.
DidNotOccur - a Boolean which will be set to true if the event for which the person
was to attend did not occur.

Attribute & AttributeValue
As mentioned elsewhere, nearly every entity type can have Attributes and the entity
instances can store AttributeValues. Every Attribute has a particular field type such as
Text, Date, Date Time, Date Range, Day of Week, Person, Group, etc. and this controls
what kind of data can be stored in the AttributeValue. There are about one hundred
field types so you should be able to store just about any kind of data you can imagine.

Attributes have the following properties:

Name - This is the friendly name of the attribute.
Key - This is the key that you may use in certain Lava filters to manage your

Version: 1.0.0 Last Updated: 6/16/202513 of 57

attribute/values.
EntityTypeId - Since an attribute is tied to an Entity Type, this holds the value of
that type.
EntityTypeQualifierColumn - This is only used in those cases where the attribute
applies to only a subset of the EntityType.
EntityTypeQualifierValue - This is only used in those cases where the attribute
applies to only a subset of the EntityType.
FieldTypeId - This indicates exactly which field type the attribute is using.
IsMultiValue - This boolean controls whether or not the attribute can have
multiple assigned values.
IsRequired - This boolean controls whether or not an attribute value must be
supplied when editing.
IsGridColumn - This boolean controls whether the attribute/value should appear
in grids where the entities are listed.
Description - This is the friendly administrative text that helps you remember
what the attribute is use for.
Order - The integer stored here indicates the ordinal when they are displayed in a
list.

AttributeValues have the following properties:

AttributeId - This indicates exactly which attribute this value belongs to.
EntityId - This indicates exactly which entity the value belongs to.
Value - This is the string representation of the attribute value for the entity.
ValueAsNumeric - This is the numeric (decimal) representation of the value.
ValueAsDateTime - This is the DateTime representation of the value.
ValueAsBoolean - This is the boolean representation of the value.
ValueAsPersonId - This is the person Id of the Value (if the value is a person alias
guid).

Out of the box Rock includes UI for adding/deleting attributes for Person, Group,
GroupType, and a few others entities, but there is an "Attributes" block that's very easy
to configure to manage new custom attributes for just about any entity. However, not
every entity "Detail" block currently has code to manage the Attribute Values for that
entity but, if you look at the code history (33a7217 and 70f3e16) of the Finance
AccountDetail block, you will see the code needed to add this feature. Be sure to check
the latest code/pattern in the AccountDetail block since some patterns have changed
slightly since those two commits were made (for example: 760f7d7).

There is another code pattern for enabling "List" blocks to show attribute values on the
grid when the attribute has the "Show in Grid" (IsGridColumn) checkbox checked. (See
2c59a7f)

Code Recipes

There isn't a quick way to load attributes in one round trip for a list of entities, but using
the “.Where” clause on attribute values for a queryable you can do something like this:

var rockContext = new RockContext();

// get groups that have a favorite color attribute of blue

Version: 1.0.0 Last Updated: 6/16/202514 of 57

https://github.com/SparkDevNetwork/Rock/commit/33a7217c30ee8252fcc8e0d4226ce17abfb78842#diff-4bad3c2046024cd04376bac327bdb5d5
https://github.com/SparkDevNetwork/Rock/commit/70f3e16d30fa12156cf18b5de4ceb85b5044389f#diff-4bad3c2046024cd04376bac327bdb5d5
https://github.com/SparkDevNetwork/Rock/blob/develop/RockWeb/Blocks/Finance/AccountDetail.ascx.cs
https://github.com/SparkDevNetwork/Rock/commit/760f7d7bec3d3e67b8f48b88d0b39c6068cc29c7
https://github.com/SparkDevNetwork/Rock/commit/2c59a7f198e5222d2493c2f7bbf9c1714e2cb7e4#diff-0ce49c8bcecac8a5267e5b0ff53c1fed

IQueryable<Group> groupsWithAttributeValues = new GroupService(rockContext)
 .Queryable().WhereAttributeValue(rockContext, "FavoriteColor", "Blue");

Group attributes are the most complicated to load since they can inherit attributes
from their parent GroupType(s) and the above snippet wouldn't work if a group
inherited an attribute value from a GroupType, but in most cases, this would do the
trick.

You can even do some complex queries using the WhereAttributeValue method and the
ValueAsBoolean, ValueAsDateTime, ValueAsNumeric forms of the Value. These
properties are automatically computed using the Value property but be sure your value
stores a Date before trying to use the ValueAsDateTime property, for example.

var rockContext = new RockContext();

// Get cool people.
 var catBaptismCutoff = RockDateTime.Now.AddYears(‐3);
 IQueryable<Person> personsThatAreCool = new PersonService(rockContext).Queryable()
 .WhereAttributeValue(rockContext, av =>
 (av.Attribute.Key == "LovesStarWars" && av.ValueAsBoolean == true)
 || (av.Attribute.Key == "CatBaptismDate" && av.ValueAsDateTime > catBaptismCutoff));

BinaryFile
A binary file is basically any kind of file that needs to be stored in Rock (or elsewhere).
The file might be an image, a check-in print label, or an uploaded PDF. Using different
"Storage Providers" the contents of the file can be stored to the web server's file
system, the database or places such as Azure, Amazon S3, etc. The BinaryFile entity will
always have the following properties:

IsTemporary - This Boolean lets Rock know if the storage of the file was only
temporarily necessary. In other words, Rock is free to delete any that are
temporary.
FileName - This is the name of the file, including any extensions. This name is
usually captured when the file is uploaded to Rock and this same name will be
used when the file is downloaded.
MimeType - No clowning around, these are official. The value recorded here tells
you if the file is a PDF, an image, text, video, word document, etc. You can see a
rather extensive official list of valid Mime Types here.

Although not technically required, a BinaryFile will also typically have the following:

BinaryFileTypeId - This lets you determine the BinaryTypeType which controls the
security requirements on the file, the storage provider to use for storing the file,
and whether or not the file can be cached.
StorageEntityTypeId - This tells you which Storage Provider is being used to store
the file. This is the Id of record from the EntityType table.
Path - This is the path to the file resource as determined by the storage provider.
URL - Somewhat related to the Path, the value stored here is the public URL used
to retrieve the file from the storage provider.

Communication
Version: 1.0.0 Last Updated: 6/16/202515 of 57

http://www.iana.org/assignments/media-types/media-types.xhtml

A communication represents an email, an SMS message or something similar. Oddly
enough there are not many required properties on a communication but they will
usually have these:

Subject - Yes, it's what you think it is.
Status - This is one of the following: 0 – Transient, 1 – Draft, 2 – Pending Approval,
3 – Approved, 4 – Denied. Transient communications are those created somehow
by the system but not yet edited by the user. They will be removed by the Rock
cleanup job periodically.
MediumEntityTypeId - This is what tells you if the communication is an email, SMS
text, etc. This is the Id of an item in the EntityType table.
SenderPersonAliasId - This is the alias id of the person who is considered the
"sender" of the communication.
IsBulkCommunication - Recommended to be set to true, if the communication is
being sent to a large amount of people who are probably not expecting it.
Recipients - This is a collection of CommunicationRecipient entities which gives
you the particular details about who is going to (or has) received the message.

CommunicationRecipient
This goes along with a Communication and holds the details about the person who
received or should have received the communication.

Status - This is one of the following and tells you whether or not the message was
sent, received and/or opened: 0 – Pending, 1 – Delivered, 2 – Failed, 3 – Cancelled, 4
– Opened, 5 – Sending.
StatusNote - This will hold any free-form text regarding the message delivery or
reason why it could not be delivered.

ContentChannel & ContentChannelItem
Content channels and the items they contain have become the main vehicle for putting
structured content (HTML) on your Rock powered website. When you look at certain
pages on the main rockrms.com website such as
https://www.rockrms.com/Rock/Connect or the promotion ads on the stock home page
of the demo site you will see them in action.

In actuality, Content Channel's have an underlying Content Channel Type where base,
inherited channel attributes and channel item attributes can be put. In this way,
Content Channel Types and Content Channels are similar to Group Types and Groups.

You may not be interacting with Content Channels in your code too often, but if you do
you'll want to study the ContentChannelView block to see how.

Note & NoteType
Notes represent an entity that holds user typed information about another entity and
Rock provides some blocks to help with their usage. To prevent you from re-creating
the wheel, let's make sure you understand the power of the Notes entity. Notes can be
seen in action on the person profile page as the "Timeline" feature via the Notes block
and on the Group Member Details page. Although Notes are relatively simple, having

Version: 1.0.0 Last Updated: 6/16/202516 of 57

http://rock.rocksolidchurchdemo.com/page/1

only a few properties listed here, they can be bound to any entity type in Rock and each
Note Type can be secured allowing only certain roles/people to view, add or edit them.
The properties of a Note are:

NoteTypeId - Each note has an underlying type that tells Rock which entity type it
is tied to and what security it has.
EntityId - This is the Id of the entity that the note is bound to. The Note's type tells
you which entity type the Id belongs to.
IsAlert - This Boolean lets Rock know if this special note should be highlighted in
some way to bring special attention to the viewer.
IsPrivateNote - This Boolean flag indicates that the note should only be visible to
the person who created the note.
Caption - This is a brief, optional title for the note which is typically
programmatically generated on the fly by Rock's internal code. For example, on a
private note, the caption is set to "You - Personal Note".
Text - This is the main content of the note.

Putting Notes on an Entity

Regardless of whether you are interacting with notes in your own code, if you find the
need to have notes on a new entity consider using the Note block with the following
setup:

1. Add a new Note Type
2. Add the Notes block to your entity details page and configure its Context with the

entity type of your choosing.
3. Edit the page Advanced Settings and set the Context Parameters so that Rock puts

the correct entity into the page context for the Note block to operate against.

Workflow & WorkflowType
A Workflow is an instance of a WorkflowType. Abstractly speaking, a WorkflowType
defines a set of Activities and Actions to perform each time a new workflow instance is
created. Typically you won't be trying to work too directly with Workflows and
WorkflowTypes in your code, but you may want to start a workflow from your code.

Here's an example of programatically launching a new Workflow using a known
workflowType (as found in the PersonUpdate.Kiosk block):

if (workflowType != null && (workflowType.IsActive ?? true))
{
 var workflowService = new WorkflowService(rockContext);
 var workflow = Rock.Model.Workflow.Activate(workflowType, "Kiosk Update Info");

 // set attributes
 workflow.SetAttributeValue("PersonId", hfPersonId.Value);
 workflow.SetAttributeValue("FirstName", tbFirstName.Text);
 workflow.SetAttributeValue("LastName", tbLastName.Text);
 workflow.SetAttributeValue("StreetAddress", acAddress.Street1);
 workflow.SetAttributeValue("City", acAddress.City);

 // ...

 // lauch workflow
 List<string> workflowErrors;

Version: 1.0.0 Last Updated: 6/16/202517 of 57

 workflowService.Process(workflow, out workflowErrors);
}

Version: 1.0.0 Last Updated: 6/16/202518 of 57

Saving Custom Data
There's so much more we can do with just blocks, but we suspect you want to create
your own custom entities that can be saved to the database. Since Rock uses
Microsoft's Entity Framework we'll show you how simple this is with a "code first"
approach.

Prerequisites

Although what we're about to do is pretty simple, we can't turn you into an
experienced C# web-developer. You should have a basic understanding of
ASP.NET Web Forms otherwise you'll probably be a bit lost in this chapter.

Referral Agency Sample Project
The Rockit SDK comes with a reference project called "Sample Project". It includes a
custom entity called ReferralAgency and also included in your plugin folder are two
custom blocks, one to list existing referral agencies and one to add/edit/view the details
of a referral agency. In this section we'll walk you through the code for the custom
ReferralAgency entity that belongs to the generic org.rocksolidchurch.SampleProject so
you have a solid foundation for creating your own custom entities.

Let's say we want to keep track of agencies that your church/organization refers people
to. We are going to create a ReferralAgency class that models an agency with its
properties and a very simple ReferralAgencyService to act as our liason with the
database. These classes will rely on the base Rock classes but We won't go too deeply
into those inner workings so we can keep this chapter simple. Then we're going to
create two blocks to help us manage our ReferralAgency items.

Rock Groups Rock

Depending on your exact needs you might be able to use Rock's super-flexible
Groups system along with Rock's general purpose Attributes system. If so, it will
mean you won't have to write any code. However for the purpose of this chapter
we'll pretend you really needed to create your own custom model.

Step 1 - Add a Project
Let's create a class library project to hold our model classes. Make sure nothing is

Version: 1.0.0 Last Updated: 6/16/202519 of 57

http://www.asp.net/web-forms/what-is-web-forms

running in Visual Studio and then right-click the solution in the Solution Explorer. Select
'Add > New Project...' Create it as a new Visual C# Class Library (Target framework .NET
Framework 4.7.2) with a name of org.rocksolidchurch.SampleProject .

Target framework

Let's create some folders to keep our stuff organized. Right-click the project in the
Solution Explorer and select 'Add > New Folder' and create:

Migrations
Model
Rest
SystemGuids

We're going to be using several other libraries in our classes so let's add references to a
few key assemblies.

From the Framework Assemblies, select:
System.ComponentModel.DataAnnotations
System.Runtime.Serialization

From the Browse, navigate to your RockWeb/bin folder and select the following
items or add them from the Tools | NuGet Package Manager | Manage NuGet
Packages for Solution (except the Rock and Rock.Rest assemblies, you'll need to
add them from RockWeb/bin):

EntityFramework.SqlServer.dll
EntityFramework.dll
Microsoft.Data.Edm.dll
Microsoft.Data.OData.dll
Newtonsoft.Json.dll

Version: 1.0.0 Last Updated: 6/16/202520 of 57

DotLiquid.dll
Rock.dll
Rock.Lava.Shared.dll
Rock.Rest.dll

Step 2 - Build a Model
Open your org.rocksolidchurch.SampleProject and create a class called
ReferralAgency.cs under the Model folder. Put this class in your
org.rocksolidchurch.SampleProject.Model namespace and have it extend
Rock.Data.Model with the type ReferralAgency and extend Rock.Security.ISecured as
shown below. You'll also want to add the [DataContract] class decorator in order to
explicitly control serialization of your class properties.

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using System.Data.Entity.ModelConfiguration;
using System.Linq;
using System.Runtime.Serialization;

using Rock.Data;
using Rock.Model;

namespace org.rocksolidchurch.SampleProject.Model
{
 [DataContract]
 public class ReferralAgency : Model<ReferralAgency>, IRockEntity
 {
 }
}

Before we add the properties for our class, let's tell the framework which table to use to
store our data. Do this by adding the [Table("TABLE‐NAME")] decorator above the
class name. Use proper Rock Naming Conventions and name it like this:

[Table("_org_rocksolidchurch_SampleProject_ReferralAgency")]
// That line goes right above the class definition...
[DataContract]
public class ReferralAgency : Model<ReferralAgency>, IRockEntity
{
 //...

Now we can add properties for contact name, phone number, website, campus and
agency type. We're going to tie our campus and agency type properties to the existing
Rock Campus and DefinedValue entities. When we do this we'll create "virtual"
properties to hold the reference to the object and regular int properties to store the
related entity object's Id.

Version: 1.0.0 Last Updated: 6/16/202521 of 57

/developer/book/16/16#namingconventions

A DefinedValue what?

A DefinedValue represents one of the possible values for a DefinedType. And, you
can think of a DefinedType like a custom field. You can review the details about
DefinedTypes in an earlier chapter.

In our case, we'll create a referral agency 'type' that holds our possible pre-set
values such as counseling, financial assistance, crisis hotline, food and clothing,
etc. Later below, we'll force the block that manages our agencies to only use this
particular DefinedType when setting the type of an agency.

public class ReferralAgency : Model<ReferralAgency>, IRockEntity
{
 // Now we'll add all our classes properties
 // except Id, Guid, CreatedByPersonAliasId, CreatedDateTime,
 // ModifiedByPersonAliasId, and ModifiedDateTime because
 // the Rock base Model class implements them for all models.

 [MaxLength(100)]
 [Required(ErrorMessage = "Name is required")]
 [DataMember]
 public string Name { get; set; }

 [DataMember]
 public string Description { get; set; }

 [MaxLength(100)]
 [DataMember]
 public string ContactName { get; set; }

 [MaxLength(100)]
 [DataMember]
 public string PhoneNumber { get; set; }

 [MaxLength(100)]
 [DataMember]
 public string Website { get; set; }

 [DataMember]
 public int? CampusId { get; set; }

 [DataMember]
 public int? AgencyTypeValueId { get; set; }

 public virtual Campus Campus { get; set; }

 [DataMember]
 public virtual DefinedValue AgencyTypeValue { get; set; }

 //...
}

That's all there is to our class, but we do need a configuration class that tells Entity
Framework how the virtual Campus and AgencyTypeValue properties relate to the int
properties of our class. Just add this to the ReferralAgency.cs file just after the closing
brace of your class (but before the closing brace of the namespace).

public partial class ReferralAgencyConfiguration : EntityTypeConfiguration<ReferralAgency>

Version: 1.0.0 Last Updated: 6/16/202522 of 57

#definedtypedefinedvalue
http://msdn.microsoft.com/en-us/data/jj591620.aspx

{
 public ReferralAgencyConfiguration()
 {
 this.HasOptional(r => r.Campus).WithMany().HasForeignKey(r => r.CampusId).WillCa
scadeOnDelete(false);
 this.HasOptional(r => r.AgencyTypeValue).WithMany().HasForeignKey(p => p.AgencyT
ypeValueId).WillCascadeOnDelete(false);

 // IMPORTANT!!
 this.HasEntitySetName("ReferralAgency");
 }
}

Note:

If you're new to the Entity Framework and you want to learn more about what's
going on behind the scenes in Rock, you should read the Get Started with Entity
Framework and/or the Working With DbContext MSDN articles.

Step 3 - Service Class
Now we'll create a ReferralAgencyService class which extends the Rock.Data.Service
and uses the RockContext to communicate with the database. This is the class that
you'll use in your blocks to fetch and store the referral agencies. Don't worry if this
seems complicated to understand. This is just boilerplate code that you don't really
have to worry too much about. It just glues our models to Rock's models.

using Rock.Data;

namespace org.rocksolidchurch.SampleProject.Model
{
 public class ReferralAgencyService : Service<ReferralAgency>
 {
 public ReferralAgencyService(RockContext context) : base(context) { }

 public bool CanDelete(ReferralAgency item, out string errorMessage)
 {
 errorMessage = string.Empty;
 return true;
 }
 }
}

It's pretty hard to believe, but that's really all there is to it. Rock's Entity Framework and
LINQ does all the heavy lifting. Now, if you wanted to implement a method that only
fetches a very specific set of data using your own custom LINQ, this is where you would
put it.

Let's also create a constant to use in our code to refer to our new referral agency type
DefinedType. We'll put these into a static class called DefinedType in our
org.rocksolidchurch.SampleProject.SystemGuid namespace under the SystemGuid
folder in our project.

using System;

namespace org.rocksolidchurch.SampleProject.SystemGuid

Version: 1.0.0 Last Updated: 6/16/202523 of 57

http://msdn.microsoft.com/en-us/ee712907
http://msdn.microsoft.com/en-us/jj729737

{
 public static class DefinedType
 {
 /// <summary>
 /// Types of Referral Agencies
 /// </summary>
 public const string REFERRAL_AGENCY_TYPE = "150478D4‐3709‐4543‐906F‐1F9496B4E7D0";
 }
}

Note on Guids

The Guid you generate for your constants are permanent and they will follow your
application wherever it goes. You will include them (along with any other data
that's needed in your new application) in something called a data "migration".
Rock uses your data migration when it installs your application into Rock. You'll
learn more about data migrations later.

You can generate Guids any way you wish as long as they're unique.

Check your work by building the project in Visual Studio. Ctrl+Shift+B

Now go to the RockWeb/bin folder and add a reference to your new
org.rocksolidchurch.SampleProject project.

In the next section we'll use what we learned in the previous guides to build blocks to
add and edit agencies and to list them.

Step 4 - Back to Blocks: ReferralAgencyDetail Block
Following the Rock block convention, we need a block to add/view/edit an agency and
one block to show the list of agencies. We'll also make these blocks follow common Rock
UI patterns.

Find your RockWeb\Plugins\org_rocksolidchurch\SampleProject folder and create a
ReferralAgencyDetail web usercontrol with an asp:UpdatePanel and with the
necessary using statements to include your new data and model classes as shown
here:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Web.UI;

using Rock;
using Rock.Constants;
using Rock.Data;
using Rock.Model;
using Rock.Web.Cache;
using Rock.Web.UI;
using Rock.Web.UI.Controls;
using Rock.Attribute;

using org.rocksolidchurch.SampleProject.Model;

Version: 1.0.0 Last Updated: 6/16/202524 of 57

http://www.uuidgenerator.net/version4

namespace RockWeb.Plugins.org_rocksolidchurch.SampleProject
{
 [DisplayName("Referral Agency Detail")]
 [Category("rocksolidchurch > Sample Project")]
 [Description("Displays the details of a Referral Agency.")]

 public partial class ReferralAgencyDetail : Rock.Web.UI.RockBlock
 {
 }
}

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="ReferralAgencyDetail.ascx.cs"
 Inherits="RockWeb.Plugins.org_rocksolidchurch.SampleProject.ReferralAgencyDetai
l" %>
<asp:UpdatePanel ID="upnlContent" runat="server">
 <ContentTemplate>

 <asp:Panel ID="pnlDetails" runat="server" Visible="false">

 </asp:Panel>

 </ContentTemplate>
</asp:UpdatePanel>

Markup (ReferralAgencyDetail.ascx)

This block will show the details of a selected agency, so we need some usercontrols and
markup inside the pnlDetails panel of our .ascx to display:

a hidden field to keep track of the id of the agency
the action the user's performing
a validation summary area
notification boxes for a possible warning/error and edit mode message
a field for each of our agency's properties
the save and cancel action buttons

Rock comes with a variety of user controls we'll use for making perfectly styled form
fields. Use the Rock:NotificationBox for the notification boxes, a Rock:CampusPicker for
the campus selector and Rock:DataTextBox for most of the remaining property fields.
The generic Rock:DataDropDownList will be good to use for selecting the agency type.

Validation Tip!

The DataTextBox is great because it can perform automatic validation based on
your entity model. So, if you have a [MaxLength(100)] attribute decorator on
your Name property, it won't let the user enter more than 100 characters.

Version: 1.0.0 Last Updated: 6/16/202525 of 57

ReferralAgencyDetail

Shows the action and the name of the item being edited.

Displays any validation errors and edit or warning messages.

The main area for the edit fields.

Location for the save, cancel, done, etc. buttons.

<asp:HiddenField ID="hfReferralAgencyId" runat="server" />

<div class="banner">
 <h1><asp:Literal ID="lActionTitle" runat="server" /></h1>
</div>

<asp:ValidationSummary ID="valSummaryTop" runat="server" HeaderText="Please Correct the Fol
lowing" CssClass="alert alert‐danger" />
<Rock:NotificationBox ID="nbWarningMessage" runat="server" NotificationBoxType="Warning" />
<Rock:NotificationBox ID="nbEditModeMessage" runat="server" NotificationBoxType="Info" />

<div class="row">
 <div class="col‐md‐6">
 <Rock:DataTextBox ID="tbName" runat="server" SourceTypeName="org.rocksolidchurch.Sa
mpleProject.Model.ReferralAgency, org.rocksolidchurch.SampleProject" PropertyName="Name" />
 </div>
 <div class="col‐md‐6">
 </div>
</div>

Action Title Banner1

Validation and Notification Area2

Form Fields3

Action Buttons4

Version: 1.0.0 Last Updated: 6/16/202526 of 57

<Rock:DataTextBox ID="tbDescription" runat="server" SourceTypeName="org.rocksolidchurch.Sam
pleProject.Model.ReferralAgency, org.rocksolidchurch.SampleProject" PropertyName="Descripti
on" TextMode="MultiLine" Rows="4" />

<div class="row">
 <div class="col‐md‐6">
 <Rock:CampusPicker ID="cpCampus" runat="server" Label="Campus" />
 <Rock:DefinedValuePicker ID="dvpAgencyType" runat="server" Label="Agency Type" />
 </div>
 <div class="col‐md‐6">
 <Rock:DataTextBox ID="tbContactName" runat="server" SourceTypeName="org.rocksolidch
urch.SampleProject.Model.ReferralAgency, org.rocksolidchurch.SampleProject" PropertyName="C
ontactName" />
 <Rock:DataTextBox ID="tbPhoneNumber" runat="server" SourceTypeName="org.rocksolidch
urch.SampleProject.Model.ReferralAgency, org.rocksolidchurch.SampleProject" PropertyName="P
honeNumber" />
 <Rock:DataTextBox ID="tbWebsite" runat="server" SourceTypeName="org.rocksolidchurch
.SampleProject.Model.ReferralAgency, org.rocksolidchurch.SampleProject" PropertyName="Websi
te" />
 </div>
</div>

<div class="actions">
 <asp:LinkButton ID="btnSave" runat="server" Text="Save" CssClass="btn btn‐primary" OnCl
ick="btnSave_Click" />
 <asp:LinkButton ID="btnCancel" runat="server" Text="Cancel" CssClass="btn btn‐link" Cau
sesValidation="false" OnClick="btnCancel_Click" />
</div>

Now the real coding begins.

Code (ReferralAgencyDetail.ascx.cs)

Create an OnInit method and add the code to bind our agency type drop-down list to
the particular referral agency type DefinedType that we defined in our
org.rocksolidchurch.SystemGuid.REFERRAL_AGENCY_TYPE constant. We'll read it from
Rock's cache for increased performance.

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);

 this.BlockUpdated += Block_BlockUpdated;
 this.AddConfigurationUpdateTrigger(upnlContent);

 var definedType = DefinedTypeCache.Get(org.rocksolidchurch.SampleProject.SystemGuid.De
finedType.REFERRAL_AGENCY_TYPE.AsGuid());
 if (definedType != null)
 {
 dvpAgencyType.DefinedTypeId = definedType.Id;
 }
}

protected void Block_BlockUpdated(object sender, EventArgs e)
{
 ShowDetail();
}

In the OnLoad event we'll just bind the campuses to the campus picker and then call a
ShowDetail() method that we will create next to show all the details of the selected
agency.

Version: 1.0.0 Last Updated: 6/16/202527 of 57

protected override void OnLoad(EventArgs e)
{
 base.OnLoad(e);

 if (!Page.IsPostBack)
 {
 var campuses = CampusCache.All();
 cpCampus.Campuses = campuses;
 cpCampus.Visible = campuses.Any();

 ShowDetail();
 }
}

The ShowDetail() will need to:

Fetch agency id given in the querystring. Use the PageParameter method to do
this.
Load the agency object using our ReferralAgencyService class
Set the page and action title on the page.
Bind the hidden id value and all the edit field values to the respective agency
property values.
Check the viewer's EDIT authorization.
If not authorized to edit, display the read-only notification box, set the edit fields
ReadOnly , property to true and hide the Save button.

private ReferralAgency _referralAgency = null;

private void ShowDetail()
{
 pnlDetails.Visible = true;

 int? referralAgencyId = PageParameter("referralAgencyId").AsIntegerOrNull();
 int? campusId = PageParameter("campusId").AsIntegerOrNull();
 int? agencyTypeValueId = PageParameter("agencyTypeId").AsIntegerOrNull();

 ReferralAgency referralAgency = null;
 if (referralAgencyId.HasValue)
 {
 referralAgency = _referralAgency ?? new ReferralAgencyService(new RockContext()).
Get(referralAgencyId.Value);
 }

 if (referralAgency != null)
 {
 RockPage.PageTitle = referralAgency.Name;
 lActionTitle.Text = ActionTitle.Edit(referralAgency.Name).FormatAsHtmlTitle();
 }
 else
 {
 referralAgency = new ReferralAgency { Id = 0, CampusId = campusId, AgencyTypeValueI
d = agencyTypeValueId };
 RockPage.PageTitle = ActionTitle.Add(ReferralAgency.FriendlyTypeName);
 lActionTitle.Text = ActionTitle.Add(ReferralAgency.FriendlyTypeName).FormatAsHtml
Title();
 }

 hfReferralAgencyId.Value = referralAgency.Id.ToString();
 tbName.Text = referralAgency.Name;
 tbDescription.Text = referralAgency.Description;

Version: 1.0.0 Last Updated: 6/16/202528 of 57

 cpCampus.SelectedCampusId = referralAgency.CampusId;
 dvpAgencyType.SetValue(referralAgency.AgencyTypeValueId);
 tbContactName.Text = referralAgency.ContactName;
 tbPhoneNumber.Text = referralAgency.PhoneNumber;
 tbWebsite.Text = referralAgency.Website;

 bool readOnly = false;

 nbEditModeMessage.Text = string.Empty;
 if (!IsUserAuthorized(Rock.Security.Authorization.EDIT))
 {
 readOnly = true;
 nbEditModeMessage.Text = EditModeMessage.ReadOnlyEditActionNotAllowed(ReferralAgen
cy.FriendlyTypeName);
 }

 if (readOnly)
 {
 lActionTitle.Text = ActionTitle.View(ReferralAgency.FriendlyTypeName);
 btnCancel.Text = "Close";
 }

 tbName.ReadOnly = readOnly;
 tbDescription.ReadOnly = readOnly;
 tbContactName.ReadOnly = readOnly;
 tbPhoneNumber.ReadOnly = readOnly;
 tbWebsite.ReadOnly = readOnly;

 btnSave.Visible = !readOnly;
}

You may have noticed we also declared a new _referralAgency private ReferralAgency
property for this block, and we try getting the agency object from there first before we
attempt to load it using our ReferralAgencyService. We're doing this for performance
reasons. As you'll see in a few minutes, we may have already loaded it inside the
GetBreadCrumbs method we're going to create.

Now let's write the btnSave_Click code that handles the Save button click event. In

here we need to:

Create a database context. We'll use this dataContext with our
ReferralAgencyService to save the changes we're about to make to a referral
agency.
If we're editing a new agency we use the service's .Add(object) method, otherwise
we fetch the agency fresh from the database using the service's .Get(int)
method.
Set the agency's property values using the values in the edit fields.
Check to see if the agency is valid and the page is also valid.
Save our changes to the database and navigate back to the parent page.

protected void btnSave_Click(object sender, EventArgs e)
{
 ReferralAgency referralAgency;
 var dataContext = new RockContext();
 var service = new ReferralAgencyService(dataContext);

 int referralAgencyId = int.Parse(hfReferralAgencyId.Value);

 if (referralAgencyId == 0)

Version: 1.0.0 Last Updated: 6/16/202529 of 57

 {
 referralAgency = new ReferralAgency();
 service.Add(referralAgency);
 }
 else
 {
 referralAgency = service.Get(referralAgencyId);
 }

 referralAgency.Name = tbName.Text;
 referralAgency.Description = tbDescription.Text;
 referralAgency.CampusId = cpCampus.SelectedCampusId;
 referralAgency.AgencyTypeValueId = dvpAgencyType.SelectedValueAsId();
 referralAgency.ContactName = tbContactName.Text;
 referralAgency.PhoneNumber = tbPhoneNumber.Text;
 referralAgency.Website = tbWebsite.Text;

 if (!referralAgency.IsValid || !Page.IsValid)
 {
 // Controls will render the error messages
 return;
 }

 dataContext.SaveChanges();

 NavigateToParentPage();

}

Let's tap into Rock's breadcrumb system. Just override the GetBreadCrumbs method and
add the name of the agency we're displaying or editing into the breadcrumbs. When
we're just adding a new agency we'll set the crumb's name to the default 'add' action
title for the general type name of the ReferralAgency class. The code looks like this:

public override List<BreadCrumb> GetBreadCrumbs(Rock.Web.PageReference pageReference)
{
 var breadCrumbs = new List<BreadCrumb>();

 string crumbName = ActionTitle.Add(ReferralAgency.FriendlyTypeName);

 int? referralAgencyId = PageParameter("referralAgencyId").AsIntegerOrNull();
 if (referralAgencyId.HasValue)
 {
 _referralAgency = new ReferralAgencyService(new RockContext()).Get(referralAgenc
yId.Value);
 if (_referralAgency != null)
 {
 crumbName = _referralAgency.Name;
 }
 }

 breadCrumbs.Add(new BreadCrumb(crumbName, pageReference));

 return breadCrumbs;
}

Lastly, if someone clicks the Cancel button we'll just write a handler to navigate back to

the parent page.

protected void btnCancel_Click(object sender, EventArgs e)
{
 NavigateToParentPage();

Version: 1.0.0 Last Updated: 6/16/202530 of 57

/developer/book/16/16#usingbreadcrumbs

}

Step 5 - ReferralAgencyList Block
Now we need a block to list the agencies. Find your
RockWeb\Plugins\org_rocksolidchurch\SampleProject folder and create a
ReferralAgencyList web usercontrol with an asp:UpdatePanel and with this template
code in your code-behind file as shown here:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Web.UI;

using Rock;
using Rock.Attribute;
using Rock.Data;
using Rock.Model;
using Rock.Web.Cache;
using Rock.Web.UI.Controls;

using org.rocksolidchurch.SampleProject.Model;

namespace RockWeb.Plugins.org_rocksolidchurch.SampleProject
{
 [DisplayName("Referral Agency List")]
 [Category("rocksolidchurch > Sample Project")]
 [Description("Lists all the Referral Agencies.")]

 [LinkedPage("Detail Page")]
 public partial class ReferralAgencyList : Rock.Web.UI.RockBlock
 {
 }
}

Notice that we've added a LinkedPage block attribute. Once it's on a page, we'll
configure it to the page that has an instance of the ReferralAgencyDetail block we just
created.

Markup (ReferralAgencyList.ascx)

This block will show a list of agencies, so we need a Grid and let's also add a GridFilter to
make it easy to filter agencies by type. This block will also allow for:

deleting agencies
navigating to an agency detail when selected
adding a new agency
saving the viewer's filter settings

Version: 1.0.0 Last Updated: 6/16/202531 of 57

ReferralAgencyList

Collapsible region that holds the filter for the grid that includes a Rock
CampusPicker and a RockDropDownList.

A Rock Grid showing a list of items.

A selectable row showing desired BoundFields for an item and with the
Grid's TooltipField set to show the item Description on hover-over.

Standard delete button for deleting an item in a grid row.

Location for any actions associated with the grid items including, add,
export, etc.

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="ReferralAgencyList.ascx.cs" Inhe
rits="RockWeb.Plugins.org_rocksolidchurch.SampleProject.ReferralAgencyList" %>
<asp:UpdatePanel ID="upnlContent" runat="server">
 <ContentTemplate>

 <Rock:GridFilter ID="gfSettings" runat="server">
 <Rock:CampusPicker ID="cpCampus" runat="server" Label="Campus" />
 <Rock:DefinedValuePicker ID="dvpAgencyType" runat="server" Label="Agency Type"
/>
 </Rock:GridFilter>

 <Rock:ModalAlert ID="mdGridWarning" runat="server" />

 <Rock:Grid ID="gAgencies" runat="server" AllowSorting="true" OnRowSelected="gAgenci
es_Edit" TooltipField="Description">
 <Columns>
 <asp:BoundField DataField="Name" HeaderText="Agency Name" SortExpression="N
ame" />

Rock GridFilter1

Rock Grid2

A row with ASP BoundFields3

Rock DeleteField4

Grid Action Bar5

Version: 1.0.0 Last Updated: 6/16/202532 of 57

 <asp:BoundField DataField="Campus.Name" HeaderText="Campus" SortExpression=
"Campus.Name" />
 <asp:BoundField DataField="AgencyTypeValue.Value" HeaderText="Type" SortExp
ression="AgencyTypeValue.Value" />
 <asp:BoundField DataField="ContactName" HeaderText="Contact Name" SortExpre
ssion="ContactName" />
 <asp:BoundField DataField="PhoneNumber" HeaderText="Phone Number" SortExpre
ssion="PhoneNumber" />
 <asp:BoundField DataField="Website" HeaderText="Website" SortExpression="We
bsite" />
 <Rock:DeleteField OnClick="gAgencies_Delete" />
 </Columns>
 </Rock:Grid>

 </ContentTemplate>
</asp:UpdatePanel>

Code (ReferralAgencyList.ascx.cs)

In the OnInit method we will:

Check the viewer's EDIT authorization.
If authorized to edit, enable the Add button on the grid and the row's' delete item
button.
Register grid filter event handlers for when the Apply button is pressed and for

when the grid filter summary is being built.
Tell the grid which key/identifier property to use from the row's item.
Tell the grid the friendly name of the items that will be displaying.
Bind the agency types and campuses in the filter.

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);

 bool canEdit = IsUserAuthorized(Rock.Security.Authorization.EDIT);

 gfSettings.ApplyFilterClick += gfSettings_ApplyFilterClick;
 gfSettings.DisplayFilterValue += gfSettings_DisplayFilterValue;

 gAgencies.Actions.ShowAdd = canEdit;
 gAgencies.IsDeleteEnabled = canEdit;
 gAgencies.Actions.AddClick += gAgencies_Add;

 gAgencies.RowItemText = "Agency";
 gAgencies.DataKeyNames = new string[] { "id" };

 BindFilter();
}

The BindFilter() method binds the campuses to the CampusPicker control and the
agency type drop-down list to our REFERRAL_AGENCY_TYPE .

private void BindFilter()
{
 var campuses = CampusCache.All();
 cpCampus.Campuses = campuses;
 cpCampus.Visible = campuses.Any();

 var definedType = DefinedTypeCache.Get(org.rocksolidchurch.SampleProject.SystemGuid.De
finedType.REFERRAL_AGENCY_TYPE.AsGuid());

Version: 1.0.0 Last Updated: 6/16/202533 of 57

 if (definedType != null)
 {
 dvpAgencyType.DefinedTypeId = definedType.Id;
 }
}

The OnLoad method uses any previously saved filter settings to select the correct filter
items before it calls a BindGrid() method.

protected override void OnLoad(EventArgs e)
{
 base.OnLoad(e);

 if (!Page.IsPostBack)
 {
 var preferences = GetBlockPersonPreferences();
 cpCampus.SetValue(preferences.GetValue("Campus").AsIntegerOrNull());
 dvpAgencyType.SelectedValue = preferences.GetValue("Agency Type");

 BindGrid();
 }
}

Our BindGrid() method uses our ReferralAgencyService to fetch the agencies and the
grid filter settings to intelligently exclude any that don't match our filter. It also sorts the
data using any sort option set on the grid by the viewer.

private void BindGrid()
{
 var service = new ReferralAgencyService(new RockContext());
 SortProperty sortProperty = gAgencies.SortProperty;

 var query = service.Queryable("Campus,AgencyTypeValue");

 var preferences = GetBlockPersonPreferences();
 int? campusId = preferences.GetValue("Campus").AsIntegerOrNull();
 if (campusId.HasValue)
 {
 query = query.Where(a => a.CampusId == campusId.Value);
 }

 int? definedValueId = preferences.GetValue("Agency Type").AsIntegerOrNull();
 if (definedValueId.HasValue)
 {
 query = query.Where(a => a.AgencyTypeValueId == definedValueId.Value);
 }

 // Sort results
 if (sortProperty != null)
 {
 gAgencies.DataSource = query.Sort(sortProperty).ToList();
 }
 else
 {
 gAgencies.DataSource = query.OrderBy(a => a.Name).ToList();
 }

 gAgencies.DataBind();
}

We'll implement the gfSettings_ApplyFilterClick handler to save the user's filter

Version: 1.0.0 Last Updated: 6/16/202534 of 57

preferences when they press the Apply button in the filter before calling BindGrid() .

protected void gfSettings_ApplyFilterClick(object sender, EventArgs e)
{
 gfSettings.SetFilterPreference("Campus", (cpCampus.SelectedCampusId != null ?
 cpCampus.SelectedCampusId.Value.ToString() : string.Empty));
 gfSettings.SetFilterPreference("Agency Type", dvpAgencyType.SelectedValue);

 BindGrid();
}

You wouldn't want the filter summary to show you're currently filtering on agency type
"3", right? For this reason, it's the job of the gfSettings_DisplayFilterValue handler to
turn the selected id for each filter item into a user readable "name".

protected void gfSettings_DisplayFilterValue(object sender, GridFilter.DisplayFilterValueA
rgs e)
{
 switch (e.Key)
 {
 case "Campus":
 {
 if (!string.IsNullOrWhiteSpace(e.Value))
 {
 e.Value = CampusCache.Get(int.Parse(e.Value)).Name;
 }
 break;
 }

 case "Agency Type":
 {
 var preferences = GetBlockPersonPreferences();
 int? valueId = preferences.GetValue("Agency Type").AsIntegerOrNull();
 if (valueId.HasValue)
 {
 var definedValue = DefinedValueCache.Get(valueId.Value);
 if (definedValue != null)
 {
 e.Value = definedValue.Value;
 }
 }
 break;
 }

 default:
 {
 e.Value = string.Empty;
 break;
 }
 }
}

The gAgencies_Add and gAgencies_Edit methods are similar except we'll pass a "0" to
the detail page when we're about to add a new agency and we'll pass the selected row's
agency Id to edit an existing agency.

protected void gAgencies_Add(object sender, EventArgs e)
{
 NavigateToDetailPage(0);
}

Version: 1.0.0 Last Updated: 6/16/202535 of 57

protected void gAgencies_Edit(object sender, RowEventArgs e)
{
 NavigateToDetailPage(e.RowKeyId);
}

Our NavigateToDetailPage method will build an appropriate querystring and then
navigate to the detail page. The detail page is determined by the LinkedPage block
attribute we named "DetailPage".

private void NavigateToDetailPage(int referralAgencyId)
{
 var preferences = GetBlockPersonPreferences();
 var queryParams = new Dictionary<string, string>();
 queryParams.Add("referralAgencyId", referralAgencyId.ToString());
 queryParams.Add("campusId", preferences.GetValue("Campus"));
 queryParams.Add("agencyTypeId", preferences.GetValue("Agency Type"));
 NavigateToLinkedPage("DetailPage", queryParams);
}

We're almost done! The gAgencies_Delete handler will check the selected agency to
verify we can delete it and show a warning if we can't. Otherwise it uses a database
context and our ReferralAgencyService once again but this time to delete and save the
changes. After saving, we'll rebind the grid to reflect the change.

protected void gAgencies_Delete(object sender, RowEventArgs e)
{
 var dataContext = new RockContext();
 var service = new ReferralAgencyService(dataContext);
 var referralAgency = service.Get((int)e.RowKeyValue);
 if (referralAgency != null)
 {
 string errorMessage;
 if (!service.CanDelete(referralAgency, out errorMessage))
 {
 mdGridWarning.Show(errorMessage, ModalAlertType.Information);
 return;
 }

 service.Delete(referralAgency);
 dataContext.SaveChanges();
 }

 BindGrid();
}

All we have to do for our gAgencies_GridRebind handler is rebind the data to the grid.

protected void gAgencies_GridRebind(object sender, EventArgs e)
{
 BindGrid();
}

Step 6 - Page and Block Setup
The last thing we'll do is add two pages where we can see the list of all agencies and the
details for a selected (or new) agency.

1. Add a new page under your favorite test-menu-page and call it "Referral Agencies".
2. Under it, add a child page called "Referral Agency Details".

Version: 1.0.0 Last Updated: 6/16/202536 of 57

3. Add the ReferralAgencyDetail block to this Referral Agency Details page.
4. Add the ReferralAgencyList block back on the Referral Agencies parent page.
5. Configure this ReferralAgencyList block instance. Set the LinkedPage to the

Referral Agency Details page.
6. Don't try to load the block yet- you may need to include a migration that we'll

cover in the next section to avoid getting an exception

This is a very common parent-child page pattern in Rock. It makes the navigation
between list and detail a predictable and easy thing to code using the
NavigateToParentPage() method.

Need code?

The code for this chapter is already in your Rockit SDK. You're welcome. :)

Version: 1.0.0 Last Updated: 6/16/202537 of 57

The Data Migration
There's one more important piece of the puzzle. It's the part that adds any new tables,
schema, and data to the database needed for your plugin/application. We call them
data migrations.

If you had tried running the example code from the previous chapter without the
corresponding data migration, you would have run into trouble. We sorta snuck them
in there for you, but now it's time to learn how to handle this yourself.

Behind the Scenes
When Rock starts it looks for any Migration classes inside any plugin assemblies.
Without trying to explain all the magic that goes on, let's just say it figures which ones
have not yet been run and calls their Up() methods.

All you really need to know is:

Migrations are ordered.
Migrations can be marked to require a minimum version of Rock.
Migrations must have an Up() and a Down() method.
Your Up() method must add any needed tables and data.
Your Down() method must remove any corresponding data and tables it added.
You should not use a RockContext to accomplish any of your data movement.

RockContext

This rule is 100% true for the core Entity Framework migrations but we've had
mixed concerns with trying to use a RockContext in a plugin migration. So, we
highly advise not doing it because it may not work in the future.

Anatomy of a Migration
Migrations should be added into your org.rocksolidchurch.SampleProject under the
Migrations folder. The files should also follow the 000_ClassName.cs naming convention
so they are sorted in your folder appropriately.

The class name may be what ever you wish but it must extend Rock's base
Rock.Plugin.Migration class as seen here:

namespace org.rocksolidchurch.SampleProject.Migrations
{

Version: 1.0.0 Last Updated: 6/16/202538 of 57

 [MigrationNumber(1, "1.0.13")]
 public class CreateDb : Migration
 {
 public override void Up()
 {
 Sql(@"...");
 }

 public override void Down()
 {
 Sql(@"...");
 }
 }
}

The [MigrationNumber(1, "1.0.13")] indicates it is the first migration and it requires
Rock version 1.0.13 in order to be installed.

You can include any general SQL statements in the Sql(string) calls and you can
also use one of the many helper methods Rock has for adding pages, adding blocks,
attributes, entities, etc. You'll find a list in the Data Migration Helper Methods section of
the next book or by examining the methods in the RockMigrationHelper class.

001_CreateDb Migration
For our ReferralAgency class we created a migration to add a new table, columns,
constraints and foreign key references as seen in this Up() method below.

You will notice several columns listed below that were not part of the model we defined.
Properties for each of these comes from the Rock base Model class and they are
required to be defined in your table's columns:

Id [int] IDENTITY(1,1) NOT NULL
Guid [uniqueidentifier] NOT NULL
CreatedDateTime [datetime] NULL
ModifiedDateTime [datetime] NULL
CreatedByPersonAliasId [int] NULL
ModifiedByPersonAliasId [int] NULL
ForeignKey [nvarchar](50) NULL
ForeignGuid [uniqueidentifier](50) NULL
ForeignId [nvarchar](50) NULL

public override void Up()
{
 Sql(@"
CREATE TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency](
 [Id] [int] IDENTITY(1,1) NOT NULL,
 [Name] [nvarchar](100) NOT NULL,
 [Description] [nvarchar](max) NULL,
 [ContactName] [nvarchar](100) NULL,
 [PhoneNumber] [nvarchar](100) NULL,
 [Website] [nvarchar](100) NULL,
 [CampusId] [int] NULL,
 [AgencyTypeValueId] [int] NULL,
 [Guid] [uniqueidentifier] NOT NULL,
 [CreatedDateTime] [datetime] NULL,
 [ModifiedDateTime] [datetime] NULL,
 [CreatedByPersonAliasId] [int] NULL,

Version: 1.0.0 Last Updated: 6/16/202539 of 57

/developer/book/16/16#datamigrationhelpermethods

 [ModifiedByPersonAliasId] [int] NULL,
 [ForeignKey] [nvarchar](50) NULL,
 [ForeignGuid] [uniqueidentifier] NULL,
 [ForeignId] [nvarchar](50) NULL,
 CONSTRAINT [PK_dbo._org_rockSolidChurch_SampleProject_ReferralAgency] PRIMARY KEY CLUSTERE
D
(
 [Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS
 = ON, ALLOW_PAGE_LOCKS = ON)
)

ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] WITH CHECK ADD CONS
TRAINT [FK_dbo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.DefinedValue_ReferralA
gencyTypeValueId] FOREIGN KEY([AgencyTypeValueId])
REFERENCES [dbo].[DefinedValue] ([Id])

ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] CHECK CONSTRAINT [FK_
dbo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.DefinedValue_ReferralAgencyTypeVa
lueId]

ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] WITH CHECK ADD CONS
TRAINT [FK_dbo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.Campus_CampusId] FOREI
GN KEY([CampusId])
REFERENCES [dbo].[Campus] ([Id])

ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] CHECK CONSTRAINT [FK_
dbo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.Campus_CampusId]

ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] WITH CHECK ADD CONS
TRAINT [FK_dbo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.PersonAlias_CreatedByP
ersonAliasId] FOREIGN KEY([CreatedByPersonAliasId])
REFERENCES [dbo].[PersonAlias] ([Id])

ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] CHECK CONSTRAINT [FK_
dbo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.PersonAlias_CreatedByPersonAliasI
d]

ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] WITH CHECK ADD CONS
TRAINT [FK_dbo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.PersonAlias_ModifiedBy
PersonAliasId] FOREIGN KEY([ModifiedByPersonAliasId])
REFERENCES [dbo].[PersonAlias] ([Id])

ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] CHECK CONSTRAINT [FK_
dbo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.PersonAlias_ModifiedByPersonAlias
Id]
");
}

The Down() method in that migration drops the constraints and table:

public override void Down()
{
 Sql(@"
ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] DROP CONSTRAINT [FK_d
bo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.PersonAlias_ModifiedByPersonAliasI
d]
ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] DROP CONSTRAINT [FK_d
bo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.PersonAlias_CreatedByPersonAliasId
]
ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] DROP CONSTRAINT [FK_d
bo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.Campus_CampusId]
ALTER TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency] DROP CONSTRAINT [FK_d
bo._org_rockSolidChurch_SampleProject_ReferralAgency_dbo.DefinedValue_ReferralAgencyTypeVal

Version: 1.0.0 Last Updated: 6/16/202540 of 57

ueId]
DROP TABLE [dbo].[_org_rockSolidChurch_SampleProject_ReferralAgency]
");
}

002_AddSystemData Migration
In a second migration we added the data we wanted to include with our plugin. We
wanted to:

1. add some new pages
2. set some page settings
3. explicitly add our new block types to Rock (versus letting Rock auto add them)
4. add instances of the new block types to our new pages
5. set block attributes on those new block instances
6. add our "Referral Agency Type" DefinedType
7. add the possible values for our new DefinedType

namespace org.rocksolidchurch.SampleProject.Migrations
{
 [MigrationNumber(2, "1.0.8")]
 public class AddSystemData : Migration
 {
 public override void Up()
 {
 RockMigrationHelper.AddPage("7F2581A1‐941E‐4D51‐8A9D‐5BE9B881B003", "D65F783D‐
87A9‐4CC9‐8110‐E83466A0EADB", "Referral Agencies", "", "223AC4F2‐CBED‐4733‐807A‐188CFBBFA0C
8", ""); // Site:Rock RMS
 RockMigrationHelper.AddPage("223AC4F2‐CBED‐4733‐807A‐188CFBBFA0C8", "D65F783D‐
87A9‐4CC9‐8110‐E83466A0EADB", "Referral Agency Details", "", "4BF8FA57‐AE86‐4103‐B07E‐80ECE
0000AEE", ""); // Site:Rock RMS

 // Since the Referral Agency Details block handles displaying the breadcrumb fo
r the page, we need to turn off the default breadcrumb rendered by the page
 Sql(@"
 UPDATE [Page] SET [BreadCrumbDisplayName] = 0 WHERE [Guid] = '4BF8FA57‐AE86‐4103‐B07E‐8
0ECE0000AEE'
");
 RockMigrationHelper.UpdateBlockType("Referral Agency Detail", "Displays the de
tails of a Referral Agency.", "~/Plugins/org_rocksolidchurch/SampleProject/ReferralAgencyDe
tail.ascx", "rocksolidchurch > Sample Project", "2F130DF6‐1EE4‐45CE‐9410‐CBB0517EB33E");
 RockMigrationHelper.UpdateBlockType("Referral Agency List", "Lists all the Ref
erral Agencies.", "~/Plugins/org_rocksolidchurch/SampleProject/ReferralAgencyList.ascx", "r
ocksolidchurch > Sample Project", "53F447CE‐4B91‐470A‐A15D‐B60DCAAB29CB");
 // Add Block to Page: Referral Agencies, Site: Rock RMS
 RockMigrationHelper.AddBlock("223AC4F2‐CBED‐4733‐807A‐188CFBBFA0C8", "", "53F4
47CE‐4B91‐470A‐A15D‐B60DCAAB29CB", "Referral Agency List", "Main", "", "", 0, "A0B53736‐413
2‐4D1B‐8300‐9F9FB1A5DC21");
 // Add Block to Page: Referral Agency Details, Site: Rock RMS
 RockMigrationHelper.AddBlock("4BF8FA57‐AE86‐4103‐B07E‐80ECE0000AEE", "", "2F13
0DF6‐1EE4‐45CE‐9410‐CBB0517EB33E", "Referral Agency Detail", "Main", "", "", 0, "B69EBD0E‐A
1B4‐47C5‐AAE7‐B40BEA37965F");
 // Attrib for BlockType: Referral Agency List:Detail Page
 RockMigrationHelper.AddBlockTypeAttribute("53F447CE‐4B91‐470A‐A15D‐B60DCAAB29C
B", "BD53F9C9‐EBA9‐4D3F‐82EA‐DE5DD34A8108", "Detail Page", "DetailPage", "", "", 0, @"", "5
B480350‐663C‐4789‐BF4D‐33EC8DF882E8");
 // Attrib Value for Block:Referral Agency List, Attribute:Detail Page Page: Ref
erral Agencies, Site: Rock RMS
 RockMigrationHelper.AddBlockAttributeValue("A0B53736‐4132‐4D1B‐8300‐9F9FB1A5DC
21", "5B480350‐663C‐4789‐BF4D‐33EC8DF882E8", @"4bf8fa57‐ae86‐4103‐b07e‐80ece0000aee");
 RockMigrationHelper.AddDefinedType("Global", "Referral Agency Type", "The type

Version: 1.0.0 Last Updated: 6/16/202541 of 57

 of agency (e.g. Counseling, Food, Financial Assistance, etc.)", "150478D4‐3709‐4543‐906F‐1
F9496B4E7D0");
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "C
ounseling and Therapy", "", "83F9A59C‐DBE5‐4E1A‐B33C‐F701FA8175E1", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "F
inancial Assistance or Counseling", "", "7A30D312‐996E‐4823‐B1FF‐AA27C1806521", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "2
4 Hour Crisis Hotlines", "", "EDBE6DCE‐313F‐4648‐8D97‐A39520A54BFC", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "Y
outh Resources", "", "BB666FA1‐5391‐40B1‐B334‐3A27575AD9D5", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "F
ood and Clothing", "", "E15AE7DE‐3555‐437B‐99B0‐B28601C4EA2D", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "H
omeless Resources/Housing", "", "F6E4D78C‐E05A‐4AEF‐AF8C‐09B3B8FDDEBF", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "S
ubstance Abuse", "", "AD01D370‐7CB6‐4261‐ACF6‐8EE21CB353AA", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "R
esidential Drug Treatment Centers", "", "57F4BCC8‐B80F‐48E5‐93E2‐A76E3F572C0C", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "D
omestic Violence Resources", "", "AE95FD8A‐FD9E‐4EDD‐9689‐5491725FEFE6", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "M
ediation", "", "40C66BE2‐CE13‐4E7D‐980A‐A2D66968CE57", false);
 RockMigrationHelper.AddDefinedValue("150478D4‐3709‐4543‐906F‐1F9496B4E7D0", "M
iscellaneous", "", "62AB4A35‐6E72‐4BCD‐BF6A‐5B0D2052BACA", false);
 }

 public override void Down()
 {
 Sql(@"
 UPDATE [_org_rockSolidChurch_SampleProject_ReferralAgency] SET [AgencyTypeValueId] = NU
LL
");
 RockMigrationHelper.DeleteDefinedType("150478D4‐3709‐4543‐906F‐1F9496B4E7D0")
;

 // Attrib for BlockType: Referral Agency List:Detail Page
 RockMigrationHelper.DeleteAttribute("5B480350‐663C‐4789‐BF4D‐33EC8DF882E8");

 // Remove Block: Referral Agency Detail, from Page: Referral Agency Details, Si
te: Rock RMS
 RockMigrationHelper.DeleteBlock("B69EBD0E‐A1B4‐47C5‐AAE7‐B40BEA37965F");

 // Remove Block: Referral Agency List, from Page: Referral Agencies, Site: Rock
 RMS
 RockMigrationHelper.DeleteBlock("A0B53736‐4132‐4D1B‐8300‐9F9FB1A5DC21");
 RockMigrationHelper.DeleteBlockType("53F447CE‐4B91‐470A‐A15D‐B60DCAAB29CB");
// Referral Agency List
 RockMigrationHelper.DeleteBlockType("2F130DF6‐1EE4‐45CE‐9410‐CBB0517EB33E");
// Referral Agency Detail
 RockMigrationHelper.DeletePage("4BF8FA57‐AE86‐4103‐B07E‐80ECE0000AEE"); // Pa
ge: Referral Agency DetailsLayout: Full Width, Site: Rock RMS
 RockMigrationHelper.DeletePage("223AC4F2‐CBED‐4733‐807A‐188CFBBFA0C8"); // Pa
ge: Referral AgenciesLayout: Full Width, Site: Rock RMS

 }
 }
}

Version: 1.0.0 Last Updated: 6/16/202542 of 57

Tip

You generally want to explicitly add new block types so that you can set well-
known Guid values for them. Doing that let's you maintain control -- so you can
find them in other Rock installations, refer to them by guid when you're adding
instances of them to pages, or setting attributes for them, etc. In fact, you should
think about doing this for anything you may need to update at a later date.

Migration Resources
Although the examples above show stuff like inline SQL directly in the migration class
file, there is another way which lets you avoid the need to escape everything for a string.

It is the Resource File. Just right-click your Migration folder and choose Add New Item...
Select Resource File and name it MigrationResources.

Add New Item... Resource File

Version: 1.0.0 Last Updated: 6/16/202543 of 57

Your New Resource File

Next, just put your raw SQL or Lava file next to the migration you want to include it in.
We recommend you prefix it with a name that matches the first part of your migration
name. So if your my migration was called 007_UpdatedReceiptTemplate7 , name the
SQL/Lava file 007_UpdatedReceiptTemplate7_MyLavaFile.lava .

Now, double-click to open your MigrationResource.resx file and drag your
007_UpdatedReceiptTemplate7_MyLavaFile.lava into the resx. If Visual Studio doesn't
know what type of file the resource is, it may default to a byte[] array. If the file is
actually just text (such as a .lava file) then change the FileType from byte[] to Text.

Version: 1.0.0 Last Updated: 6/16/202544 of 57

Check FileType after adding a new resource

That's everything you need to know to get started. Now you can use the details in the
Packaging Plugins & Themes to start sharing all your amazing plugins in the RockShop.

Version: 1.0.0 Last Updated: 6/16/202545 of 57

https://www.rockrms.com/Rock/Developer/Book/26/26

Data Migration Helper Methods
Creating data migrations can be a bit of a chore, but we created some migration helper
methods to give you super powers. These methods will help you to add/register new
blocks, add pages, add blocks to pages, add groups, add defined types, etc. So instead
of writing something like this:

Sql(string.Format(@"
DECLARE @FieldTypeId int
SET @FieldTypeId = (SELECT [Id] FROM [FieldType] WHERE [Guid] = '{1}')
DELETE [Attribute]
WHERE [EntityTypeId] IS NULL
AND [Key] = '{2}'
AND [EntityTypeQualifierColumn] = '{8}'
AND [EntityTypeQualifierValue] = '{9}'
INSERT INTO [Attribute] (
 [IsSystem],[FieldTypeId],[EntityTypeId],
 [EntityTypeQualifierColumn],[EntityTypeQualifierValue],
 [Key],[Name],[Description],
 [Order],[IsGridColumn],[DefaultValue],[IsMultiValue],
 [IsRequired],[Guid])
VALUES(
 1, @FieldTypeId, NULL,
 '{8}', '{9}',
 '{2}', '{3}', '{4}',
 {5}, 0, '{6}', 0,
 0, '{7}')
 ",
 "",
 "C28C7BF3‐A552‐4D77‐9408‐DEDCF760CED0",
 "Safe Sender Domains".Replace(" ", string.Empty),
 "Safe Sender Domains",
 "Delimited list of domains that can be used to send emails. It's simple.".Replace("'",
 "''"),
 0,
 "",
 "CDD29C51‐5D33‐435F‐96AB‐2C06BA772F88",
 "",
 "")
);

You can just write it like this:

RockMigrationHelper.AddGlobalAttribute("C28C7BF3‐A552‐4D77‐9408‐DEDCF760CED0", "", "", "Sa
fe Sender Domains", "Delimited list of domains that can be used to send emails. It's simple
.", 0, "", "CDD29C51‐5D33‐435F‐96AB‐2C06BA772F88");

Helper Method Reference

Version: 1.0.0 Last Updated: 6/16/202546 of 57

We've listed all the helper methods for you by entity type for your review.

ActionTypeAttributeValue
AddActionTypeAttributeValue(string actionTypeGuid, string attributeGuid,
string value)
Adds the action type attribute value.

ActionTypePersonAttributeValue
AddActionTypePersonAttributeValue(string actionTypeGuid, string
attributeGuid, string value)
Adds an action type person attribute value. Because there's not a way to link to
another person in the target database, person attribute values are just set to the
first person alias record in the target database which will most likely be the Admin,
Admin record.

Attribute
DeleteAttribute(string guid)
Deletes the attribute.

AttributeQualifier
AddAttributeQualifier(string attributeGuid, string key, string value, string
guid)
Adds the attribute qualifier.

AttributeValue
AddAttributeValue(string attributeGuid, int entityId, string value, string guid
)
Adds a new attribute value for the given attributeGuid if it does not already exist.

BinaryFileType
UpdateBinaryFileType(string storageEntityTypeId, string name, string
description, string iconCssClass, string guid, bool allowCaching, bool
requiresViewSecurity)
Updates the type of the binary file.

Block
AddBlock(string pageGuid, string layoutGuid, string blockTypeGuid, string
name, string zone, string preHtml, string postHtml, int order, string guid)
Adds a new Block of the given block type to the given page (optional) and layout
(optional), setting its values with the given parameter values. If only the layout is
given, edit/configuration authorization will also be inserted into the Auth table for
the admin role (GroupId 2).
DeleteBlock(string guid)

Version: 1.0.0 Last Updated: 6/16/202547 of 57

Deletes the block and any authorization records that belonged to it.

BlockAttribute
DeleteBlockAttribute(string guid)
Deletes the block Attribute.

BlockAttributeValue
AddBlockAttributeValue(string blockGuid, string attributeGuid, string value,
bool appendToExisting)
Adds a new block attribute value for the given block guid and attribute guid,
deleting any previously existing attribute value first.
DeleteBlockAttributeValue(string blockGuid, string attributeGuid)
Deletes the block attribute value.

BlockType
AddBlockType(string name, string description, string path, string category,
string guid)
Adds a new BlockType.
UpdateBlockType(string name, string description, string path, string
category, string guid)
Updates the BlockType by path (if it exists); otherwise it inserts a new record. In
either case it will be marked IsSystem.
DeleteBlockType(string guid)
Deletes the BlockType.

BlockTypeAttribute
AddBlockTypeAttribute(string blockTypeGuid, string fieldTypeGuid, string
name, string key, string category, string description, int order, string
defaultValue, string guid, bool isRequired)
Adds a new BlockType Attribute for the given blocktype and key.
UpdateBlockTypeAttribute(string blockTypeGuid, string fieldTypeGuid, string
name, string key, string category, string description, int order, string
defaultValue, string guid)
Updates the BlockType Attribute for the given blocktype and key (if it exists);
otherwise it inserts a new record.

Category
UpdateCategory(string entityTypeGuid, string name, string iconCssClass,
string description, string guid, int order)
Updates the category.
DeleteCategory(string guid)
Deletes the category.

DefinedType
Version: 1.0.0 Last Updated: 6/16/202548 of 57

AddDefinedType(string category, string name, string description, string guid,
string helpText)
Adds a new DefinedType.
DeleteDefinedType(string guid)
Deletes the DefinedType.

DefinedTypeAttribute
AddDefinedTypeAttribute(string definedTypeGuid, string fieldTypeGuid,
string name, string key, string description, int order, string defaultValue,
string guid)
Adds the defined type attribute.

DefinedValue
AddDefinedValue(string definedTypeGuid, string value, string description,
string guid, bool isSystem)
Adds a new DefinedValue for the given DefinedType.
UpdateDefinedValue(string definedTypeGuid, string value, string description,
string guid, bool isSystem)
Updates (or Adds) the defined value for the given DefinedType.
DeleteDefinedValue(string guid)
Deletes the DefinedValue.

DefinedValueAttributeValue
AddDefinedValueAttributeValue(string definedValueGuid, string
attributeGuid, string value)
Adds the defined value attribute value.
UpdateDefinedValueAttributeValue(string definedValueGuid, string
attributeGuid, string value)
Adds the defined value attribute value.

DefinedValueAttributeValueByValue
AddDefinedValueAttributeValueByValue(string definedTypeGuid, string
definedValueValue, string attributeKey, string value)
Adds the name of the defined value attribute value by.

DefinedValueByValue
UpdateDefinedValueByValue(string definedTypeGuid, string value, string
description, int order, bool isSystem)
Updates the name of the defined value by.

EntityAttribute
AddEntityAttribute(string entityTypeName, string fieldTypeGuid, string
entityTypeQualifierColumn, string entityTypeQualifierValue, string name,

Version: 1.0.0 Last Updated: 6/16/202549 of 57

string category, string description, int order, string defaultValue, string guid)
Adds a new EntityType Attribute for the given EntityType, FieldType, and name
(key).
UpdateEntityAttribute(string entityTypeName, string fieldTypeGuid, string
entityTypeQualifierColumn, string entityTypeQualifierValue, string name,
string description, int order, string defaultValue, string guid)
Updates the Entity Attribute for the given EntityType, FieldType, and name (key).
otherwise it inserts a new record.

EntityType
UpdateEntityType(string name, string guid, bool isEntity, bool isSecured)
Updates the EntityType by name (if it exists); otherwise it inserts a new record.
UpdateEntityType(string name, string friendlyName, string assemblyName,
bool isEntity, bool isSecured, string guid)
Updates the EntityType by name (if it exists); otherwise it inserts a new record.
DeleteEntityType(string guid)
Deletes the EntityType.

EntityTypeMultiValueFieldType
UpdateEntityTypeMultiValueFieldType(string entityTypeName, string
fieldTypeGuid)
Updates the EntityType MultiValueFieldType

EntityTypeSingleValueFieldType
UpdateEntityTypeSingleValueFieldType(string entityTypeName, string
fieldTypeGuid)
Updates the EntityType SingleValueFieldType

FieldType
UpdateFieldType(string name, string description, string assembly, string
className, string guid, bool IsSystem)
Updates the FieldType by assembly and className (if it exists); otherwise it inserts
a new record.
DeleteFieldType(string guid)
Deletes the FieldType.

GlobalAttribute
AddGlobalAttribute(string fieldTypeGuid, string entityTypeQualifierColumn,
string entityTypeQualifierValue, string name, string description, int order,
string defaultValue, string guid)
Adds a global Attribute for the given FieldType, entityTypeQualifierColumn,
entityTypeQualifierValue and name (key). Note: This method delets the Attribute
first if it had already existed.

Version: 1.0.0 Last Updated: 6/16/202550 of 57

Group
DeleteGroup(string guid, bool orphanAnyChildren)
Deletes the group.

GroupMemberAttributeDefinedValue
AddGroupMemberAttributeDefinedValue(string groupGuid, string name,
string description, int order, string defaultValue, bool isGridColumn, bool
isMultiValue, bool isRequired, string definedTypeGuid, string guid, bool
isSystem)
Adds or updates a group member Attribute for the given group for storing a
particular defined value. The defined values are constrained by the given defined
type.
UpdateGroupMemberAttributeDefinedValue(string groupGuid, string name,
string description, int order, string defaultValue, bool isGridColumn, bool
isMultiValue, bool isRequired, string definedTypeGuid, string guid, bool
isSystem)
Adds or updates a group member Attribute for the given group for storing a
particular defined value. The defined values are constrained by the given defined
type.

GroupType
DeleteGroupType(string guid)
Deletes the GroupType.

GroupTypeGroupAttribute
AddGroupTypeGroupAttribute(string groupTypeGuid, string fieldTypeGuid,
string name, string description, int order, string defaultValue, string guid)
Adds a new GroupType "Group Attribute" for the given GroupType using the given
values.

GroupTypeRole
AddGroupTypeRole(string groupTypeGuid, string name, string description, int
order, int? maxCount, int? minCount, string guid, bool isSystem, bool
isLeader, bool isDefaultGroupTypeRole)
Adds or Updates the GroupTypeRole for the given guid (if it exists); otherwise it
inserts a new record. Can also set the role as the default for the given GroupType
if isDefaultGroupTypeRole is set to true.
UpdateGroupTypeRole(string groupTypeGuid, string name, string description,
int order, int? maxCount, int? minCount, string guid, bool isSystem, bool
isLeader, bool isDefaultGroupTypeRole)
Adds or Updates the GroupTypeRole for the given guid (if it exists); otherwise it
inserts a new record. Can also set the role as the default for the given GroupType
if isDefaultGroupTypeRole is set to true.
DeleteGroupTypeRole(string guid)

Version: 1.0.0 Last Updated: 6/16/202551 of 57

Deletes the GroupTypeRole.

HtmlContentBlock
UpdateHtmlContentBlock(string blockGuid, string htmlContent, string guid)
Add or Updates the HTML content for an HTML Content Block

Layout
AddLayout(string siteGuid, string fileName, string name, string description,
string guid)
Adds a new Layout to the given site.
DeleteLayout(string guid)
Deletes the Layout.

Page
AddPage(string parentPageGuid, string layoutGuid, string name, string
description, string guid, string iconCssClass, string insertAfterPageGuid)
Adds a new Page to the given parent page. The new page will be ordered as last
child of the parent page.
MovePage(string pageGuid, string parentPageGuid)
Moves the Page to the new given parent page.
DeletePage(string guid)
Deletes the Page and any PageViews that use the page.

PageContext
AddPageContext(string pageGuid, string entity, string idParameter)
UpdatePageContext(string pageGuid, string entity, string idParameter, string
guid)
Adds or Updates PageContext to the given page, entity, idParameter
DeletePageContext(string guid)
Deletes the page context.

PageRoute
AddPageRoute(string pageGuid, string route)
Adds a new PageRoute to the given page but only if the given route name does not
exist.

PersonAttribute
UpdatePersonAttribute(string fieldTypeGuid, string categoryGuid, string
name, string key, string iconCssClass, string description, int order, string
defaultValue, string guid)
Updates the BlockType Attribute for the given blocktype and key (if it exists);
otherwise it inserts a new record.

Version: 1.0.0 Last Updated: 6/16/202552 of 57

PersonAttributeCategory
UpdatePersonAttributeCategory(string name, string iconCssClass, string
description, string guid, int order)
Updates the person attribute category.

PersonBadge
UpdatePersonBadge(string name, string description, string entityTypeName,
int order, string guid)
Updates the PersonBadge by Guid (if it exists); otherwise it inserts a new record.

PersonBadgeAttribute
AddPersonBadgeAttribute(string personBadgeGuid, string fieldTypeGuid,
string name, string key, string description, int order, string defaultValue,
string guid)
Adds (or Deletes and Adds) the person badge attribute.

PersonBadgeAttributeValue
AddPersonBadgeAttributeValue(string personBadgeGuid, string
attributeGuid, string value)
Adds/Updates the person badge attribute value.

Report
AddReport(string categoryGuid, string dataViewGuid, string entityTypeGuid,
string name, string description, string guid, int? fetchTop)
Adds a report.
DeleteReport(string guid)
Deletes the report

ReportField
DeleteReportField(string guid)
Deletes the report field.

RestAction
AddRestAction(string controllerName, string controllerClass, string
actionMethod, string actionPath)
Adds the rest action.

RestController
AddRestController(string controllerName, string controllerClass)
Adds the rest controller.

SecurityAuth

Version: 1.0.0 Last Updated: 6/16/202553 of 57

AddSecurityAuth(string entityTypeName, string action, string groupGuid,
string authGuid)
Adds the security auth record for the given entity type and group.
DeleteSecurityAuth(string guid)
Deletes the security auth record.

SecurityAuthForAttribute
AddSecurityAuthForAttribute(string attributeGuid, int order, string action,
bool allow, string groupGuid, int specialRole, string authGuid)
Adds the attribute security authentication. Set GroupGuid to null when setting to a
special role
DeleteSecurityAuthForAttribute(string attributeGuid)
Deletes the security authentication for page.

SecurityAuthForBinaryFileType
AddSecurityAuthForBinaryFileType(string binaryFileTypeGuid, int order,
string action, bool allow, string groupGuid, Rock.Model.SpecialRole
specialRole, string authGuid)
Adds the binaryfiletype security authentication. Set GroupGuid to null when
setting to a special role

SecurityAuthForBlock
AddSecurityAuthForBlock(string blockGuid, int order, string action, bool
allow, string groupGuid, Rock.Model.SpecialRole specialRole, string authGuid
)
Adds the page security authentication. Set GroupGuid to null when setting to a
special role
DeleteSecurityAuthForBlock(string blockGuid)
Deletes the security authentication for block.

SecurityAuthForCategory
AddSecurityAuthForCategory(string categoryGuid, int order, string action,
bool allow, string groupGuid, int specialRole, string authGuid)
Adds the category security authentication. Set GroupGuid to null when setting to a
special role
DeleteSecurityAuthForCategory(string categoryGuid)
Deletes the security authentication for category.

SecurityAuthForEntityType
AddSecurityAuthForEntityType(string entityTypeName, int order, string
action, bool allow, string groupGuid, int specialRole, string authGuid)
Adds the security auth record for the given entity type and group.

SecurityAuthForGroupType
Version: 1.0.0 Last Updated: 6/16/202554 of 57

AddSecurityAuthForGroupType(string groupTypeGuid, int order, string
action, bool allow, string groupGuid, Rock.Model.SpecialRole specialRole,
string authGuid)
Adds the page security authentication. Set GroupGuid to null when setting to a
special role
DeleteSecurityAuthForGroupType(string groupTypeGuid)
Deletes the security authentication for groupType.

SecurityAuthForPage
AddSecurityAuthForPage(string pageGuid, int order, string action, bool allow,
string groupGuid, int specialRole, string authGuid)
Adds the page security authentication. Set GroupGuid to null when setting to a
special role
DeleteSecurityAuthForPage(string pageGuid)
Deletes the security authentication for page.

SecurityAuthForRestAction
AddSecurityAuthForRestAction(string restActionMethod, string
restActionPath, int order, string action, bool allow, string groupGuid,
Rock.Model.SpecialRole specialRole, string authGuid)
Adds the security authentication for rest action.

SecurityAuthForRestController
AddSecurityAuthForRestController(string restControllerClass, int order,
string action, bool allow, string groupGuid, Rock.Model.SpecialRole
specialRole, string authGuid)
Adds the security authentication for rest controller.

SecurityRoleGroup
AddSecurityRoleGroup(string name, string description, string guid)
Adds the security role group.
DeleteSecurityRoleGroup(string guid)
Deletes the security role group.

Site
AddSite(string name, string description, string theme, string guid)
Adds a new Layout to the given site.
DeleteSite(string guid)
Deletes the Layout.

SystemEmail
DeleteSystemEmail(string guid)
Deletes the SystemEmail.

Version: 1.0.0 Last Updated: 6/16/202555 of 57

WorkflowActionEntityAttribute
UpdateWorkflowActionEntityAttribute(string actionEntityTypeGuid, string
fieldTypeGuid, string name, string key, string description, int order, string
defaultValue, string guid)
Updates the workflow action entity attribute.

WorkflowActivityTypeAttribute
UpdateWorkflowActivityTypeAttribute(string workflowActivityTypeGuid,
string fieldTypeGuid, string name, string key, string description, int order,
string defaultValue, string guid)
Updates the workflow activity type attribute.

WorkflowTypeAttribute
UpdateWorkflowTypeAttribute(string workflowTypeGuid, string
fieldTypeGuid, string name, string key, string description, int order, string
defaultValue, string guid)
Updates the workflow type attribute.

Gotcha!

When creating your SQL migrations be sure to watch out for the common gotchas
in the next section.

Double The Quotes
Be sure to double any quotes that you have within your own SQL as seen here:

Sql(@"
 UPDATE
 [Attribute]
 SET
 [Description] = 'He said ""Rock"" is fun. Don''t you agree?'
 WHERE
 [Guid] = 'ABCDEFG9‐1111‐2222‐3333‐1213456789ABC'
");

Don't Quote Your Nulls
Just pass the null keyword as seen below:

RockMigrationHelper.UpdateGroupTypeRole("E0C5A0E2‐B7B3‐4EF4‐820D‐BBF7F9A374EF", "Facebook
Friend", "A Facebook friend.",
0, null, null, "AB69816C‐4DFA‐4A7A‐86A5‐9BFCBA6FED1E");

Migration Generation Tools
You may find yourself creating a new page with child pages that use your new blocks, or
your block may use a new custom workflow that you need to distribute with your
package. Depending on the situation, creating a migration by hand can be a daunting

Version: 1.0.0 Last Updated: 6/16/202556 of 57

task. We've felt that pain too and created a few more helper tools.

If you look in the Rock\Dev Tools\Sql folder, you'll notice several sql scripts that start
with the prefix CodeGen*_ . These scripts can help generate many of the needed
MigrationHelper methods for your stuff.

For example, when executed, the
CodeGen_PagesBlocksAttributesMigration_ForAPage.sql script takes the PageId
parameter (which you set to the id of your choice):

DECLARE @PageId int = 226

...and outputs the needed MigrationHelper methods for the Up() and Down() methods
of your migration.

// MigrationUp
// ‐‐‐‐‐‐‐‐‐‐‐
// Page: Layout Detail
RockMigrationHelper.AddPage("A2991117‐0B85‐4209‐9008‐254929C6E00F","D65F783D‐87A9‐4CC9‐8110
‐E83466A0EADB","Layout Detail","","E6217A2B‐B16F‐4E84‐BF67‐795CA7F5F9AA","fa fa‐th"); // Si
te:Rock RMS
RockMigrationHelper.UpdateBlockType("Layout Detail","Displays the details for a specific la
yout.","~/Blocks/Cms/LayoutDetail.ascx","CMS","68B9D63D‐D714‐473A‐89F2‐62EB1602E00A");
RockMigrationHelper.UpdateBlockType("Layout Block List","Lists blocks that are on a given s
ite layout.","~/Blocks/Cms/LayoutBlockList.ascx","CMS","CD3C0C1D‐2171‐4FCC‐B840‐FC6E6F72EEE
F");
RockMigrationHelper.AddBlock("E6217A2B‐B16F‐4E84‐BF67‐795CA7F5F9AA","","68B9D63D‐D714‐473A‐
89F2‐62EB1602E00A","Layout Detail","Main","","",0,"C04C6905‐C156‐49D3‐832D‐D09F3B0E1BF1");

RockMigrationHelper.AddBlock("E6217A2B‐B16F‐4E84‐BF67‐795CA7F5F9AA","","CD3C0C1D‐2171‐4FCC‐
B840‐FC6E6F72EEEF","Layout Block List","Main","","",1,"5FB1CC3B‐4550‐4099‐8C83‐044FF57CEAD8
");

// MigrationDown
// ‐‐‐‐‐‐‐‐‐‐‐‐‐
RockMigrationHelper.DeleteBlock("5FB1CC3B‐4550‐4099‐8C83‐044FF57CEAD8");
RockMigrationHelper.DeleteBlock("C04C6905‐C156‐49D3‐832D‐D09F3B0E1BF1");
RockMigrationHelper.DeleteBlockType("CD3C0C1D‐2171‐4FCC‐B840‐FC6E6F72EEEF");
RockMigrationHelper.DeleteBlockType("68B9D63D‐D714‐473A‐89F2‐62EB1602E00A");
RockMigrationHelper.DeletePage("E6217A2B‐B16F‐4E84‐BF67‐795CA7F5F9AA"); // Page: Layout De
tail

Caution!

Don't forget to really look closely at the code these scripts generate. It's always a
good idea to verify that it did not include any extra bits, pages, items, etc.

You may need to experiment with each one to become familiar with how it works, but
they all work similarly. Scripts like CodeGen_WorkflowTypeMigration.sql can save you
tons of hours, but you need to know it works a little differently. That script outputs all
Workflow related records except the ones defined in its #knownGuidsToIgnore table.

Version: 1.0.0 Last Updated: 6/16/202557 of 57

	More Than Blocks
	Common Entities
	Advanced Entity Guide
	Saving Custom Data
	The Data Migration
	Data Migration Helper Methods

