

Introduction
As digital ministry continues to grow, scaling your technical infrastructure becomes
more and more important. Larger organizations may have unique needs to handle peak
loads. The goal of this guide is to provide you with instructions and tips for scaling Rock
to meet your needs.

Version: 1.16.0 Last Updated: 5/15/20231 of 12

Rock Web Farm
Large organizations soon reach the point where a single server will no longer be able to
support peak loads. When this happens, the need for a server cluster becomes evident.
Clusters, however, add several unique challenges, and their implementation must be
approached with a healthy amount of planning and strategy.

The goal of this chapter is to provide an organization with best practices on how to
implement a server cluster in a Rock environment and to cover the web farm features
built into Rock.

Architecting Your Server Cluster
Scaling Directions

You have two directions when it comes to scaling your environment. Scaling up,
sometimes referred to as scaling vertically, means that you increase the size of your
server by adding additional CPUs and memory. The other direction is to scale out,
commonly described as scaling horizontally, which is to add additional servers to your
environment.

Scale Up Scale Out

Version: 1.16.0 Last Updated: 5/15/20232 of 12

Components of a Rock Cluster

There are four major components of a Rock cluster. The following diagram outlines
these components with further details below.

Version: 1.16.0 Last Updated: 5/15/20233 of 12

Components of a Rock Cluster

The application gateway’s primary job is to direct traffic to the web server
cluster. It ensures that requests are load balanced over the various
servers in the cluster. It also ensures that if a server goes down, that
traffic is re-directed to other servers in the farm. The type and
configuration of these gateways will vary depending on your cloud
provider. For those using Azure, we recommend using the Azure App
Gateway. One important configuration for the app gateway is that it
should have session affinity enabled. This means that traffic for a specific
client will always return to the same server. This is important, as Rock’s
check-in uses session state.

This is the group of web application servers that are participating in the
cluster. More details on the configuration of these servers can be found
below.

The database in a clustered environment isn’t that different than one in a
non-clustered environment. Some organizations choose to enable a
database cluster, but this isn’t required. The specifics of setting up your
database will be unique to your cloud host. Whether your database is
clustered or not is transparent to Rock.

The message bus is what allows the various Rock web servers to
communicate to other nodes in the cluster. The details of these
conversations are discussed below. Two bus services are currently
supported by Rock. They are:

1. Azure Message Bus
2. Rabbit MQ

Application Gateway1

Web Server Cluster2

Database3

Message Bus4

Version: 1.16.0 Last Updated: 5/15/20234 of 12

Redis Server

Previous versions of Rock clusters relied on a Redis server. The message bus now
replaces the need for the Redis server. We highly recommend moving away from
the Redis solution to the new web farm features. Support for Redis clusters is
deprecated as of Rock v13.

Benefits of Clusters

Server clusters have two primary benefits: increased scale and added redundancy. Let’s
consider each in turn.

Clusters obviously provide additional computing resources for supporting your digital
strategy. Modern cloud environments have no problem providing large servers, but
when hosting web applications, at a certain point the law of diminishing returns kicks in.
In a Rock environment, CPU is often the constraint. Memory, though important, usually
isn’t nearly as limiting a factor as the CPU.

The second benefit of clustering is redundancy. While outages are rare and quickly
recovered in a cloud environment, having multiple servers provides a failover capability.
While this is a great benefit, be careful. The added complexity of a clustered
environment can actually reduce the up-time of your application if it isn’t well
architected and managed by a team who understands the new infrastructure and
services required.

Though not a primary benefit, some organizations use clusters to partition their traffic.
This allows dedicated servers for traffic to support things like the internal portal,
external websites, check-in and API hosting. By providing dedicated resources for these
services, you can limit the spill-over of congestion from one service to another.

What Makes Clusters Difficult

Implementing a Rock cluster drastically increases the complexity of your environment.
Below are several factors you should consider before moving forward with a cluster
project.

1. Increase Infrastructure Knowledge: As you’ve seen, there are several new
infrastructure components required to run a Rock cluster. Components like
application gateways can be difficult to set up and support. Be sure that your team
has the necessary engineering knowledge to support these environments now
and in the future.

2. Rock Updates: Updating Rock is more difficult in a clustered environment.
Currently, each server will need to be updated manually (or through custom dev
ops automation).

3. Rock File Types: In a clustered environment, it’s important that all Rock file types
are cloud or database backed. If you use the ‘File System’ type, files will only be
available on a single node in the cluster.

4. File System Sync: Besides file types there are other opportunities for files to be
uploaded to a single node. For example, the HTML editor allows files to be
uploaded to the ~/Content directory of a node. These files will appear as broken

Version: 1.16.0 Last Updated: 5/15/20235 of 12

links to clients pointed at other web application nodes in the cluster. There are
tools you can configure to sync these directories, but they represent another
service to configure and maintain.

5. TLS Complexity: In a clustered environment, we recommend you use a
provisioned wildcard digital certificate instead of an ACME certificate. This
represents an additional cost, and you’ll need to remember to renew it.

6. Limited Partner Support: There are a limited number of Rock Partners with
familiarity with Rock’s web farm features.

Recommendations for Rock Clusters

As you consider the design of your Rock cluster, there are several principles you should
consider. Below are our recommendations to consider as you plan your
implementation.

1. The Best Cluster is No Cluster: Simply put, server clusters are difficult and add
complexity to the environment.

2. Prefer Fewer Larger Servers: As you plan your cluster, we recommend having
fewer large nodes than more smaller nodes. The fewer nodes you have the less
complexity you have.

3. Scale Up Not Out: If you would like to add additional resources for critical
timeframes, we recommend you scale up the existing servers in your cluster
rather than adding new nodes to the cluster. Adding new nodes requires complex
dev ops to create node templates and deploy them as needed, whereas increasing
the size of a running node is typically much easier using existing tools provided by
your cloud service.

Configuring a Rock Web Farm
Before getting started you’ll want to complete the following pre-steps:

1. Web Farm License Key: Running a web farm requires a unique license key from
Spark. This is necessary as the web farm feature has an additional cost to help
support the feature without the need to use funding from donations. Reach out to
Spark at info@sparkdevnetwork.org to obtain information about how to license
the web farm.

2. Infrastructure Configuration: The configuration steps below assume you have all
of the needed infrastructure configured and Rock installed and running. It’s
outside of the scope of this document to provide step-by-step guidance on
configuring the infrastructure, as these steps will be very different depending on
your cloud hosting provider. Reach out to a Rock Partner
(https://www.rockrms.com/partners) if you need help with this configuration.
Below is a list of the high-level components that should be configured:

1. App Gateway configured and working.
2. Database server configured.
3. Web application nodes configured and running.
4. Rock installed on each web application node. Be sure that Rock jobs is only

installed to run on a single node of your cluster. This is set in the server’s
web.config file.

Version: 1.16.0 Last Updated: 5/15/20236 of 12

mailto:info@sparkdevnetwork.org
https://www.rockrms.com/partners

With these steps complete, you’re now ready to configure the web farm. Below are the
steps you’ll need to follow.

1. Configure the Message Bus

If you haven’t yet configured a message bus in Rock, you’ll need to do that before
proceeding. See the Admin Hero Guide for more information on configuring the
message bus.

2. Activate the Web Farm

Navigate to Admin Tools > System Settings > Web Farm to enable the web farm feature. This

is where you will activate the web farm and enter your unique license key.

Web Farm Configuration

The remaining settings can be left as is. The additional configuration values are
discussed below in the section on how nodes elect leaders.

3. Restart All Web Nodes

Once the configuration is set, you ’ll need to restart all the nodes in the farm. Once
restarted, the web farm is fully configured. You’ll want to ensure that each node is
displayed on the Web Farm page.

Version: 1.16.0 Last Updated: 5/15/20237 of 12

https://community.rockrms.com/documentation/bookcontent/9#messagebus

Web Farm Nodes

The Secret Life of Web Farm Nodes
Behind the scenes, the nodes of a web farm communicate with each other over the
message bus to keep each other in the loop on what’s happening inside the cluster.
These messages are related to two primary types:

1. Cache Invalidation: When a node changes a value that lives inside of the Rock
cache, it must notify the other nodes in the farm to also update their cache.

2. Node Status: As the nodes start-up, they elect a leader of the cluster. One of the
roles of the leader is to check-in with each node on a routine basis to ensure it is
still up and running. Any discrepancies the leader finds will be reported in the web
farm log.

Node Start-up / Shutdown

As nodes start-up, they report their status to the web farm log and mark their status as
active. They also report when they shut down and change their status to inactive. This
notifies the leader which nodes are expected to be running.

Leader Responsibilities

As noted above, one of the responsibilities of the node leader is to check the status of
every node marked as being active. This status check is run on a configured polling
schedule. On each run, the leader sends every active node a ping. If a node does not
respond within a few seconds with a pong response, the leader reports the node as
having been marked active but no longer responding.

Leader Election

You may be wondering how a leader is elected by the cluster. The election process is a
sophisticated algorithm that allows the nodes to jointly elect a leader as well as trigger a
re-election event, should the leader go AWOL. Let’s take a closer look at how the
election process works.

Version: 1.16.0 Last Updated: 5/15/20238 of 12

As a node starts-up, it randomly selects a polling interval to use. The selection of the
random interval is guided by the configuration of the web farm. The configuration
settings tell the node the minimum and maximum interval value. Using these values as
boundaries, the node randomly selects a value somewhere between. It then checks the
database to see if another node already has a similar interval (what constitutes a similar
interval is also configurable). If a node is found with a similar interval it tries another
random interval until an acceptable value is generated. This interval is then stored in
the database for that specific node.

The leader of the cluster is the node with the smallest interval, meaning it will be the
first to send out a request to other nodes for a status check. As each other node
receives a status check request, it also notes that it has been contacted by the leader
and therefore should reset its timer to ping other nodes. If the leader goes offline, the
node with the next lowest interval will reach its status check interval and assume the
leadership role. These changes of leadership are noted in the web farm log.

When a leader node comes back online, their smaller interval length will kick back in,
and it will regain leadership within a status cycle or two.

The current leader of a cluster is noted by a small icon in the upper right of the node
card.

Leader Node

In the above scenario, the leader node is randomly selected. If you prefer, you can
specify a particular node as leader by setting the interval value on the node’s
WebFarmNode record in the database. Setting the
ConfiguredLeadershipPollingIntervalSeconds property disables the random value,
which currently must be updated in SQL. Placing a value lower than the minimum will
ensure that the node is always the leader when running. If that node goes offline,
another node will still step in until it comes back online.

Node Names

By default, the name of the node will be read from the service's machine name. If you
prefer to use a different name, you can provide it in the web.config file with the app
setting key of “NodeName”.

Node Metrics

You’ll notice that basic CPU metrics are provided for each node in the cluster. This
provides a quick way to confirm that the load is being roughly balanced across your
nodes. If you find that these charts vary greatly across your nodes, it may mean that
something is not correctly configured in your application gateway.

Version: 1.16.0 Last Updated: 5/15/20239 of 12

Current Limitations
Rock’s Web Farm features will continue to grow as more time and resources become
available to fund resources. Below is a list of known limitations.

1. Page Routes: Changes and additions of page routes currently are not
communicated to other nodes in the web farm. These are updated nightly when
the AppPool restarts. If you need them sooner, you’ll need to restart each node in
the cluster.

2. Job Runner: The current feature set will not prevent two servers from running
jobs.

Version: 1.16.0 Last Updated: 5/15/202310 of 12

Rock Context
Some organizations may find that it's worthwhile to maintain a separate database for
Rock that's only used for reading (and not writing) data. A read-only database gives
people a place to go besides your primary database, helping to lighten the load on that
database.

You may already have a database for this purpose. Any Azure customer using a
Business Critical or Premium SQL tier is automatically provided with a read-only replica
of the production database that matches the compute and storage performance of the
primary server.

Data Views and Plugins

Some plugins provide data view filters that make updates to the database. That
won't work in a read-only environment, so a Disable Use Of Read Only Context
setting will appear when editing data views. This allows an administrator to
disable the read-only feature for that particular data view.

Updating Connection Strings
Rock needs to know that a read-only database exists, so it can direct traffic there when
certain blocks are accessed. This will be done by updating your
web.ConnectionStrings.config file. You'll want to leave the existing file content
unchanged, and add the additions shown in the examples below.

The RockContextReadOnly context will be used by Data Views and Reports. An example
connection string for this context is provided below. Aside from the "name" you'll need
to update the other parts of the connection string, like "Data Source" and "Initial
Catalog", according to your setup.

RockContextReadOnly

 <add connectionString="Data Source=localhost;
 Initial Catalog=RockDB; User Id=RockUser;
 password=123456789; MultipleActiveResultSets=true"
 name="RockContext"
 providerName="System.Data.SqlClient" />

 <add connectionString="Data Source=localhost;
 Initial Catalog=RockDB_READ; User Id=RockUser;
 password=123456789; MultipleActiveResultSets=true"
 name="RockContextReadOnly"

Version: 1.16.0 Last Updated: 5/15/202311 of 12

 providerName="System.Data.SqlClient" />

The three analytics blocks listed below have been updated to use the
RockContextAnalytics context:

Giving Analytics
Attendance Analytics
Pledge Analytics

To make use of this context, add a connection string like the one shown below to your
web.ConnectionStrings.config file. Again, you'll want to change the "name" to
RockContextAnalytics and update the other items according to your setup.

RockContextAnalytics

 <add connectionString="Data Source=localhost;
 Initial Catalog=RockDB; User Id=RockUser;
 password=123456789; MultipleActiveResultSets=true"
 name="RockContext"
 providerName="System.Data.SqlClient" />

 <add connectionString="Data Source=localhost;
 Initial Catalog=RockDB_READ; User Id=RockUser;
 password=123456789; MultipleActiveResultSets=true"
 name="RockContextAnalytics"
 providerName="System.Data.SqlClient" />

Version: 1.16.0 Last Updated: 5/15/202312 of 12

	Introduction
	Rock Web Farm
	Rock Context

